@article{TVP_2012_57_2_a13,
author = {S. C. Yam and S. P. Yung and W. Zhou},
title = {A unified {\textquotedblleft}bang-bang{\textquotedblright} principle with respect to {R-invariant} performance benchmarks},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {405--414},
year = {2012},
volume = {57},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a13/}
}
TY - JOUR AU - S. C. Yam AU - S. P. Yung AU - W. Zhou TI - A unified “bang-bang” principle with respect to R-invariant performance benchmarks JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2012 SP - 405 EP - 414 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a13/ LA - en ID - TVP_2012_57_2_a13 ER -
S. C. Yam; S. P. Yung; W. Zhou. A unified “bang-bang” principle with respect to R-invariant performance benchmarks. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 405-414. http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a13/
[1] Akahori J., “Some formulae for a new type of path-dependent option”, Ann. Appl. Probab., 5:2 (1995), 383–388 | DOI | MR
[2] Allaart P. C., “A general “bang-bang” principle for predicting the maximum of a random walk”, J. Appl. Probab., 47:4 (2010), 1072–1083 | DOI | MR
[3] Allaart P. C., A “bang-bang” principle for predicting the supremum of a random walk or Lévy process, 2009, arXiv: 0912.0615
[4] Dai M., Jin H. Q, Zhong Y. F, Zhou X. Y., “Buy low and sell high”, Contemporary Quantitative Finance, Essays in Honour of Eckhard Platen, Springer, Berlin, 2010, 317–333 | DOI | MR
[5] Dai M., Zhong Y. F., “Optimal stock selling/buying strategy with reference to the ultimate average”, Math. Finance, 22:1 (2012), 165–184 | DOI | MR
[6] Dassios A., “The distribution of the quantile of a Brownian motion with drift and the pricing of related path-dependent options”, Ann. Appl. Probab., 5:2 (1995), 389–398 | DOI | MR
[7] Du Toit J., Peskir G., “The trap of complacency in predicting the maximum”, Ann. Probab., 35:1 (2007), 340–365 | DOI | MR
[8] Du Toit J., Peskir G., “Selling a stock at the ultimate maximum”, Ann. Appl. Probab., 19:3 (2009), 983–1014 | DOI | MR
[9] Graversen S. E., Peskir G., Shiryaev A. N., “Stopping Brownian motion without anticipation as close as possible to its ultimate maximum”, Teoriya veroyatn. i ee primen., 45:1 (2000), 125–136 | MR | Zbl
[10] Pedersen J. L., “Optimal prediction of the ultimate maximum of Brownian motion”, Stoch. Stoch. Rep., 75:4 (2003), 205–219 | MR
[11] Shiryaev A. N., “Quickest detection problems in the technical analysis of the financial data”, Mathematical Finance, Bachelier Congress (Paris, 2000), Springer, Berlin, 2002, 487–521 | MR
[12] Shiryaev A. N., Xu Z., Zhou X. Y., “Thou shalt buy and hold”, Quant. Finance, 8:8 (2008), 765–776 | DOI | MR
[13] Yam S. C. P., Yung S. P., Zhou W., “Two rationales behind the “buy-and-hold or sell-at-once” strategy”, J. Appl. Probab., 46:3 (2009), 651–668 | DOI | MR