A unified “bang-bang” principle with respect to R-invariant performance benchmarks
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 405-414 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2012_57_2_a13,
     author = {S. C. Yam and S. P. Yung and W. Zhou},
     title = {A unified {\textquotedblleft}bang-bang{\textquotedblright} principle with respect to {R-invariant} performance benchmarks},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {405--414},
     year = {2012},
     volume = {57},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a13/}
}
TY  - JOUR
AU  - S. C. Yam
AU  - S. P. Yung
AU  - W. Zhou
TI  - A unified “bang-bang” principle with respect to R-invariant performance benchmarks
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 405
EP  - 414
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a13/
LA  - en
ID  - TVP_2012_57_2_a13
ER  - 
%0 Journal Article
%A S. C. Yam
%A S. P. Yung
%A W. Zhou
%T A unified “bang-bang” principle with respect to R-invariant performance benchmarks
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 405-414
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a13/
%G en
%F TVP_2012_57_2_a13
S. C. Yam; S. P. Yung; W. Zhou. A unified “bang-bang” principle with respect to R-invariant performance benchmarks. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 405-414. http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a13/

[1] Akahori J., “Some formulae for a new type of path-dependent option”, Ann. Appl. Probab., 5:2 (1995), 383–388 | DOI | MR

[2] Allaart P. C., “A general “bang-bang” principle for predicting the maximum of a random walk”, J. Appl. Probab., 47:4 (2010), 1072–1083 | DOI | MR

[3] Allaart P. C., A “bang-bang” principle for predicting the supremum of a random walk or Lévy process, 2009, arXiv: 0912.0615

[4] Dai M., Jin H. Q, Zhong Y. F, Zhou X. Y., “Buy low and sell high”, Contemporary Quantitative Finance, Essays in Honour of Eckhard Platen, Springer, Berlin, 2010, 317–333 | DOI | MR

[5] Dai M., Zhong Y. F., “Optimal stock selling/buying strategy with reference to the ultimate average”, Math. Finance, 22:1 (2012), 165–184 | DOI | MR

[6] Dassios A., “The distribution of the quantile of a Brownian motion with drift and the pricing of related path-dependent options”, Ann. Appl. Probab., 5:2 (1995), 389–398 | DOI | MR

[7] Du Toit J., Peskir G., “The trap of complacency in predicting the maximum”, Ann. Probab., 35:1 (2007), 340–365 | DOI | MR

[8] Du Toit J., Peskir G., “Selling a stock at the ultimate maximum”, Ann. Appl. Probab., 19:3 (2009), 983–1014 | DOI | MR

[9] Graversen S. E., Peskir G., Shiryaev A. N., “Stopping Brownian motion without anticipation as close as possible to its ultimate maximum”, Teoriya veroyatn. i ee primen., 45:1 (2000), 125–136 | MR | Zbl

[10] Pedersen J. L., “Optimal prediction of the ultimate maximum of Brownian motion”, Stoch. Stoch. Rep., 75:4 (2003), 205–219 | MR

[11] Shiryaev A. N., “Quickest detection problems in the technical analysis of the financial data”, Mathematical Finance, Bachelier Congress (Paris, 2000), Springer, Berlin, 2002, 487–521 | MR

[12] Shiryaev A. N., Xu Z., Zhou X. Y., “Thou shalt buy and hold”, Quant. Finance, 8:8 (2008), 765–776 | DOI | MR

[13] Yam S. C. P., Yung S. P., Zhou W., “Two rationales behind the “buy-and-hold or sell-at-once” strategy”, J. Appl. Probab., 46:3 (2009), 651–668 | DOI | MR