@article{TVP_2012_57_2_a12,
author = {M. Zani},
title = {Sample path large deviations for squares of stationary {Gaussian} processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {395--405},
year = {2012},
volume = {57},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a12/}
}
M. Zani. Sample path large deviations for squares of stationary Gaussian processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 395-405. http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a12/
[1] Bhatia R., Matrix Analysis, Springer-Verlag, New York, 1996, 347 pp. | MR
[2] Borovkov A. A., “Granichnye zadachi dlya sluchainykh bluzhdanii i bolshie ukloneniya v funktsionalnykh prostranstvakh”, Teoriya veroyatn. i ee primen., 12:4 (1967), 635–654 | MR
[3] de Acosta A., “Large deviations for vector-valued Lévy processes”, Stochastic Process. Appl., 51:1 (1994), 75–115 | DOI | MR
[4] Dembo A., Zeitouni O., “Large deviations for subsampling from individual sequences”, Statist. Probab. Lett., 27:3 (1996), 201–205 | DOI | MR
[5] Dembo A., Zeitouni O., Large Deviations Techniques and Applications, Springer-Verlag, New York, 1998, 396 pp. | MR
[6] Dupuis P., Ellis R. S., A Weak Convergence Approach to the Theory of Large Deviations, Wiley, New York, 1997, 479 pp. | MR
[7] Gamboa F., Gassiat E., “Bayesian methods and maximum entropy for ill-posed inverse problems”, Ann. Statist., 25:1 (1997), 328–350 | DOI | MR
[8] Gamboa F., Rouault A., Zani M., “A functional large deviations principle for quadratic forms of Gaussian stationary processes”, Statist. Probab. Lett., 43:3 (1999), 299–308 | DOI | MR
[9] Grenander U., Segë G., Tëplitsevy formy i ikh prilozheniya, IL, M., 1961, 308 pp.
[10] Kac M., Murdock W. L., Szegö G., “On the eigenvalues of certain Hermitian forms”, J. Rational Mech. Anal., 2 (1953), 767–800 | MR
[11] Lynch J., Sethuraman J., “Large deviations for processes with independent increments”, Ann. Probab., 15:2 (1987), 610–627 | DOI | MR
[12] Maïda M., Najim J., Péché S., “Large deviations for weighted empirical mean with outliers”, Stochastic Process. Appl., 117:10 (2007), 1373–1403 | DOI | MR
[13] Mogulskii A.A., “Bolshie ukloneniya dlya traektorii mnogomernykh sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 21:2 (1976), 309–323 | MR
[14] Mogul'skiǐ A. A., “Large deviations for processes with independent increments”, Ann. Probab., 21:1 (1993), 202–215 | DOI | MR
[15] Najim J., “A Cramér type theorem for weighted random variables”, Electron. J. Probab., 7:4 (2002), 1–32 | MR
[16] Perrin O., Zani M., “Large deviations for sample paths of Gaussian processes quadratic variations”, Zap. nauch. sem. POMI, 328, 2005, 169–181 | MR
[17] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973, 469 pp.
[18] Rockafellar R. T., “Integrals which are convex functionals II”, Pacific J. Math., 39 (1971), 439–469 | MR
[19] Sanov I. N., “O veroyatnosti bolshikh otklonenii sluchainykh velichin”, Matem. sb., 42:1 (1957), 11–44
[20] Varadhan S. R. S., “Asymptotic probabilities and differential equations”, Comm. Pure Appl. Math., 19 (1966), 261–286 | DOI | MR
[21] Zani M., Grandes déviations pour des fonctionnelles issues de la statistique des processus, Thèse, Orsay, 2000