Optimal multiple stopping with sum-payoff
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 384-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2012_57_2_a11,
     author = {A. Faller and L. R\"uschendorf},
     title = {Optimal multiple stopping with sum-payoff},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {384--395},
     year = {2012},
     volume = {57},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a11/}
}
TY  - JOUR
AU  - A. Faller
AU  - L. Rüschendorf
TI  - Optimal multiple stopping with sum-payoff
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 384
EP  - 395
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a11/
LA  - en
ID  - TVP_2012_57_2_a11
ER  - 
%0 Journal Article
%A A. Faller
%A L. Rüschendorf
%T Optimal multiple stopping with sum-payoff
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 384-395
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a11/
%G en
%F TVP_2012_57_2_a11
A. Faller; L. Rüschendorf. Optimal multiple stopping with sum-payoff. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 384-395. http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a11/

[1] Bender C., “Dual pricing of multi-exercise options under volume constraints”, Finance Stoch., 15:1 (2011), 1–26 | DOI | MR

[2] Bruss F. T., “On a class of optimal stopping problems with mixed constraints”, Discrete Math. Theoret. Comput. Sci., 12 (2010), 363–380 | MR

[3] Bruss F. T., Ferguson T. S., “Multiple buying and selling with vector offers”, J. Appl. Probab., 34:4 (1997), 959–973 | DOI | MR

[4] Faller A., Approximative Lösungen von Mehrfachstoppproblemen, Dissertation, University of Freiburg, 2009

[5] Faller A., Rüschendorf, “On approximative solutions of optimal stopping problems”, Adv. Appl. Probab., 43:4 (2011), 1086–1108 | DOI | MR

[6] Faller A., Rüschendorf, “On approximative solutions of multistopping problems”, Ann. Appl. Probab., 21:5 (2011), 1965–1993 ; arXiv: 1201.0083v1 | DOI | MR

[7] de Haan L., Verkade E., “On extreme-value theory in the presence of a trend”, J. Appl. Probab., 24:1 (1987), 62–76 | DOI | MR

[8] Kennedy D. P., Kertz R. P., “Limit theorems for threshold-stopped random variables with applications to optimal stopping”, Adv. Appl. Probab., 22:2 (1990), 396–411 | DOI | MR

[9] Kennedy D. P., Kertz R. P., “The asymptotic behavior of the reward sequence in the optimal stopping of i.i.d. random variables”, Ann. Probab., 19:1 (1991), 329–341 | DOI | MR

[10] Kühne R., Rüschendorf L., “Approximation of optimal stopping problems”, Stochastic Process. Appl., 90:2 (2000), 301–325 | DOI | MR

[11] Kühne R., Rüschendorf L., “Optimal stopping with discount and observation costs”, J. Appl. Probab., 37:1 (2000), 64–72 | DOI | MR

[12] Saario V., “Comparison of the discrete and continuous-time stochastic selling models”, Engineering Costs and Production Economics, 12 (1992), 15–20 | DOI

[13] Saario V., Sakaguchi M., “Some generalized house-selling problems”, Math. Japon., 38:5 (1990), 861–873 | MR

[14] Sakaguchi M., “Optimal stopping in sampling from a bivariate distribution”, J. Oper. Res. Soc. Japan, 16 (1973), 186–200 | MR

[15] Sakaguchi M., “When to stop: randomly appearing bivariate target values”, J. Oper. Res. Soc. Japan, 21:1 (1978), 45–58 | MR

[16] Stadje W., “On multiple stopping rules”, Optimization, 16:3 (1985), 401–418 | DOI | MR

[17] Stadje W., “A full information pricing problem for the sale of several identical commodities”, Z. Oper. Res.,, 34:3 (1990), 161–181 | MR