Critical branching process with two types of particles evolving in asynchronous random environments
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 225-256 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2012_57_2_a1,
     author = {V. A. Vatutin and Q. Liu},
     title = {Critical branching process with two types of particles evolving in asynchronous random environments},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {225--256},
     year = {2012},
     volume = {57},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - Q. Liu
TI  - Critical branching process with two types of particles evolving in asynchronous random environments
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 225
EP  - 256
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a1/
LA  - ru
ID  - TVP_2012_57_2_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A Q. Liu
%T Critical branching process with two types of particles evolving in asynchronous random environments
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 225-256
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a1/
%G ru
%F TVP_2012_57_2_a1
V. A. Vatutin; Q. Liu. Critical branching process with two types of particles evolving in asynchronous random environments. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 225-256. http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a1/

[1] Afanasyev V. I., Geiger G., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[2] Athreya K. B., Karlin S., “On branching processes with random environments. I. Extinction probabilities”, Ann. Math. Statist., 42 (1971), 1499–1520 | DOI | MR | Zbl

[3] Borodin A. N., Salminen P., Spravochnik po brounovskomu dvizheniyu. Fakty i formuly, Lan, SPb., 2000, 640 pp.

[4] Doney R. A., Jones E. M., “Large deviation results for random walks conditioned to stay positive”, J. London Mathem. Society, submitted

[5] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. II, Mir, M., 1984, 738 pp.

[6] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 | MR | Zbl

[7] Smith W. L., Wilkinson W., “On branching processes in random environment”, Ann. Math. Statist., 40:3 (1969), 814–827 | DOI | MR | Zbl

[8] Spitser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969, 472 pp.

[9] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede, I: predelnye teoremy”, Teoriya veroyatn. i ee primenen., 48:2 (2003), 274–300 | Zbl

[10] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona-Vatsona v sluchainoi srede, II: konechnomernye raspredeleniya”, Teoriya veroyatn. i ee primenen., 49:2 (2004), 231–268 | Zbl

[11] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, Teoriya veroyatn. i ee primenen., 51:1 (2006), 22–46 | MR