The limit theorems for first passage time of Markov chain for nonlinear boundary
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 1, pp. 178-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2012_57_1_a9,
     author = {F. G. Ragimov and F. D. Azizov},
     title = {The limit theorems for first passage time of {Markov} chain for nonlinear boundary},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {178--185},
     year = {2012},
     volume = {57},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a9/}
}
TY  - JOUR
AU  - F. G. Ragimov
AU  - F. D. Azizov
TI  - The limit theorems for first passage time of Markov chain for nonlinear boundary
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 178
EP  - 185
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a9/
LA  - ru
ID  - TVP_2012_57_1_a9
ER  - 
%0 Journal Article
%A F. G. Ragimov
%A F. D. Azizov
%T The limit theorems for first passage time of Markov chain for nonlinear boundary
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 178-185
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a9/
%G ru
%F TVP_2012_57_1_a9
F. G. Ragimov; F. D. Azizov. The limit theorems for first passage time of Markov chain for nonlinear boundary. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 1, pp. 178-185. http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a9/

[1] Borovkov A. A., “Asimptotika veroyatnosti peresecheniya granitsy traektoriei tsepi Markova. Regulyarnye khvosty skachkov”, Teoriya veroyatn. i ee primen., 47:4 (2002), 625–653 | MR

[2] Borovkov A. A., “Asimptotika veroyatnosti peresecheniya granitsy traektoriei tsepi Markova. Eksponentsialno ubyvayuschie khvosty skachkov”, Teoriya veroyatn. i ee primen., 48:2 (2003), 254–273 | MR | Zbl

[3] Fuh C.-D., “Asymptotic operating characteristics of an optimal change point detection in hidden Markov models”, Ann. Statist., 32:5 (2004), 2305–2339 | DOI | MR | Zbl

[4] Korshunov D. A., “Predelnye teoremy dlya obschikh tsepei Markova”, Sib. matem. zhurn., 42:2 (2001), 354–371

[5] Mogyoródi J., “On limiting distributions for sums of a random number of independent random variables”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 6:3 (1961), 365–371 | MR | Zbl

[6] Ragimov F. G., “Asimptoticheskoe razlozhenie raspredeleniya vremeni peresecheniya nelineinykh granits”, Teoriya veroyatn. i ee primen., 37:3 (1992), 580–583 | MR | Zbl

[7] Ragimov F. G., “Integralnye predelnye teoremy dlya vremeni peresecheniya nelineinykh granits summami nezavisimykh velichin”, Teoriya veroyatn. i ee primen., 50:1 (2005), 158–161 | MR

[8] Gut A., Stopped Random Walks. Limit Theorems and Applications, Springer-Verlag, New York, 1988, 199 pp. | MR

[9] Woodroofe M., A Nonlinear Renewal Theory in Sequential Analysis, SIAM, Philadelphia, 1982, 119 pp. | MR