@article{TVP_2012_57_1_a3,
author = {Ya. Yu. Nikitin and R. S. Pusev},
title = {The exact asymptotic of small deviations for a series of {Brownian} functionals},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {98--123},
year = {2012},
volume = {57},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a3/}
}
TY - JOUR AU - Ya. Yu. Nikitin AU - R. S. Pusev TI - The exact asymptotic of small deviations for a series of Brownian functionals JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2012 SP - 98 EP - 123 VL - 57 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a3/ LA - ru ID - TVP_2012_57_1_a3 ER -
Ya. Yu. Nikitin; R. S. Pusev. The exact asymptotic of small deviations for a series of Brownian functionals. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 1, pp. 98-123. http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a3/
[1] Aurzada F., Ibragimov I. A., Lifshits M. A., van Zanten X., “Malye ukloneniya gladkikh statsionarnykh gaussovskikh protsessov”, Teoriya veroyatn. i ee primen., 53:4 (2008), 788–798 | MR
[2] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1974, 296 pp.
[3] Borodin A. N., “Brounovskoe lokalnoe vremya”, Uspekhi matem. nauk, 44:2 (1989), 7–48 | MR
[4] Borodin A. N., Salminen P., Spravochnik po brounovskomu dvizheniyu. Fakty i formuly, Lan, SPb, 2000, 640 pp. | Zbl
[5] Gikhman I. I., “O neparametricheskom kriterii odnorodnosti $k$ vyborok”, Teoriya veroyatn. i ee primen., 2:2 (1957), 380–384
[6] Ibragimov I. A., “O veroyatnosti popadaniya gaussova vektora so znacheniyami v gilbertovom prostranstve v sferu malogo radiusa”, Zap. nauchn. sem. LOMI, 85 (1979), 75–93 | MR | Zbl
[7] Lifshits M. A., Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995, 246 pp. | Zbl
[8] Mikhailova E. M., “Asimptoticheskie raspredeleniya dlya brounovskogo dvizheniya so snosom”, Uspekhi matem. nauk, 49:4 (1994), 173–174 | MR | Zbl
[9] Nazarov A. I., “O tochnoi konstante v asimptotike malykh uklonenii v $L_2$-norme nekotorykh gaussovskikh protsessov”, Nelineinye uravneniya i matematicheskii analiz, Problemy matem. analiza, 26, T. Rozhkovskaya, Novosibirsk, 2003, 179–214
[10] Nazarov A. I., Pusev R. S., “Tochnaya asimptotika malykh uklonenii v $L_2$-norme s vesom dlya nekotorykh gaussovskikh protsessov”, Zap. nauchn. sem. POMI, 364 (2009), 166–199 | MR
[11] Nikitin Ya. Yu., Kharinskii P. A., “Tochnaya asimptotika malykh uklonenii v $L_2$-norme dlya odnogo klassa gaussovskikh protsessov”, Zap. nauchn. sem. POMI, 311 (2004), 214–221 | MR | Zbl
[12] Pusev R. S., “Asimptotika malykh uklonenii protsessov Bogolyubova v kvadratichnoi norme”, Teor. i mat. fizika, 165:1 (2010), 134–144
[13] Sankovich D. P., “Gaussovy funktsionalnye integraly i gibbsovskie ravnovesnye srednie”, Teor. i mat. fizika, 119:2 (1999), 345–352 | MR | Zbl
[14] Sankovich D. P., “Funktsionalnyi integral Bogolyubova”, Nelineinaya dinamika, sb. statei, Tr. MIAN, 251, Nauka, M., 2005, 223–256 | MR
[15] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits i I. Stigan, Nauka, M., 1979 | MR
[16] Sytaya G. N., “O nekotorykh asimptoticheskikh predstavleniyakh gaussovskoi mery v gilbertovom prostranstve”, Teoriya sluchainykh protsessov, 2 (1974), 93–104
[17] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980, 463 pp. | MR | Zbl
[18] Fatalov V. R., “Konstanty v asimptotikakh veroyatnostei malykh uklonenii dlya gaussovskikh protsessov i polei”, Uspekhi matem. nauk, 58:4 (2003), 89–134 | MR | Zbl
[19] Fatalov V. R., “Vremena prebyvaniya i tochnye asimptotiki malykh uklonenii besselevskikh protsessov dlya $L^p$-norm, $p>0$”, Izv. RAN. Ser. matem., 71:4 (2007), 69–102 | MR | Zbl
[20] Fatalov V. R., “Nekotorye asimptoticheskie formuly dlya gaussovskoi mery Bogolyubova”, Teor. i mat. fizika, 157:2 (2008), 286–308 | MR | Zbl
[21] Fatalov V. R., “Tochnye asimptotiki malykh uklonenii dlya statsionarnogo protsessa Ornshteina–Ulenbeka i nekotorykh gaussovskikh diffuzii v $L^p$-norme, $2 \le p \le \infty$”, Probl. peredachi inform., 44:2 (2008), 75–95 | MR
[22] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983, 352 pp. | MR | Zbl
[23] Adler R. J., An introduction to continuity, extrema and related topics for general Gaussian processes, Inst. of Math. Stat. Lect. Notes, Monograph Ser., 12, Inst. of Math. Stat., Hayward, CA, 1990, 160 pp. | MR | Zbl
[24] Alili L., “On some hyperbolic principal values of Brownian local times”, Exponential Functionals and Principal Values Related to Brownian Motion, ed. M. Yor, Biblioteca de la Revista Matematica Ibero-Americana, Madrid, 1997, 131–154 | MR | Zbl
[25] Alili L., Donati-Martin C., Yor M., “Une identité en loi remarquable pour l'excursion brownienne normalisée”, Exponential Functionals and Principal Values Related to Brownian Motion, ed. M. Yor, Biblioteca de la Revista Matematica Ibero-Americana, Madrid, 1997, 155–180 | MR | Zbl
[26] Anderson T. W., Darling D. A., “Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes”, Ann. Mathem. Statist., 23 (1952), 193–212 | DOI | MR | Zbl
[27] Beghin L., Nikitin Ya., Orsingher E., “Exact small ball constants for some Gaussian processes under $L_2$-norm”, Zap. nauchn. sem. POMI, 298 (2003), 5–21 | MR | Zbl
[28] Bertoin J., Pitman J., Ruiz de Chavez J., “Constructions of a Brownian path with a given minimum”, Electr. Commun. in Probab., 4 (1999), 31–37 | MR | Zbl
[29] Biane Ph., Yor M., “Valeurs principales associés aux temps locaux browniens”, Bull. Sci. Math., 2e série, 111 (1987), 23–101 | MR | Zbl
[30] Biane Ph., Pitman J., Yor M., “Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions”, Bull. Amer. Math. Soc., 38:4 (2001), 435–465 | DOI | MR | Zbl
[31] Ciesielski Z., Taylor S. J., “First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path”, Trans. Amer. Math. Soc., 103 (1962), 434–450 | DOI | MR | Zbl
[32] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958, 474 pp.
[33] Csörgő M., Shi Z., Yor M., “Some asymptotic properties of the local time of the uniform empirical process”, Bernoulli, 5 (1999), 1035–1058 | DOI | MR
[34] Dudley R. M., Hoffmann-Jørgensen J., Shepp L. A., “On the lower tail of Gaussian seminorms”, Ann. Probab., 7 (1979), 319–342 | DOI | MR | Zbl
[35] Dunker T., Lifshits M. A., Linde W., “Small deviations of sums of independent variables”, High Dimensional Probability, Progress in Probability, 43, Birkhaeuser, Basel, 1998, 59–74 | MR | Zbl
[36] Ferraty F., Vieu Ph., Nonparametric Functional Data Analysis, Springer, Berlin, 2006, 258 pp. | MR
[37] Fröman N., Fröman P. O., JWKB Approximation, North-Holland, Amsterdam, 1965
[38] Gao F., Hannig J., Lee T.-Y., Torcaso F., “Laplace transforms via Hadamard factorization”, Electron. J. Probab., 8:13 (2003), 1–20 | MR
[39] Gao F., Hannig J., Lee T.-Y., Torcaso F., “Exact $L_2$-small balls of Gaussian processes”, J. Theoret. Probab., 17:2 (2004), 503–520 | DOI | MR | Zbl
[40] Gutierrez Jaimez R., Valderrama Bonnet M. J., “On the Karhunen–Loève expansion for transformed processes”, Trab. Estad., 2 (1987), 81–90 | DOI | Zbl
[41] Ito K., McKean H. P., Diffusion Processes And Their Sample Paths, Springer, Berlin, 1965, 321 pp. | MR
[42] Janson S., “Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas”, Probability Surveys, 4 (2007), 80–145 | MR | Zbl
[43] Kennedy D. P., “The distribution of the maximum Brownian excursion”, J. Appl. Probab., 13 (1976), 371–376 | DOI | MR | Zbl
[44] Kiefer J., “$k$-sample analogues of the Kolmogorov–Smirnov and Cramér–von Mises tests”, Ann. Math. Stat., 30 (1959), 420–447 | DOI | MR | Zbl
[45] Lévy P., Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris, 1965 | MR
[46] Li W. V., “Comparison results for the lower tail of Gaussian seminorms”, J. Theoret. Probab., 5:1 (1992), 1–31 | DOI | MR
[47] Li W. V., Shao Q. M., “Gaussian processes: inequalities, small ball probabilities and applications”, Stochastic Processes: Theory and Methods, Handbook Statist., 19, North-Holland, Amsterdam, 2001, 533–597 | DOI | MR | Zbl
[48] Lifshits M. A., “On the lower tail probabilities of some random series”, Ann. Probab., 25:1 (1997), 424–442 | DOI | MR | Zbl
[49] Lifshits M. A., “Asymptotic behavior of small ball probabilities”, Proceedings of the Seventh International Vilnius conference on Probability Theory and Mathematical Statistics, VSP/TEV, Utrecht/Vilnius, 1999, 453–468
[50] Lifshits M. A., Bibliography on small deviation probabilities http://www.proba.jussieu.fr/pageperso/smalldev/biblio.pdf
[51] Mansuy R., “An interpretation and some generalizations of the Anderson–Darling statistics in terms of squared Bessel bridges”, Statistics and Probab. Lett., 72 (2005), 171–177 | DOI | MR | Zbl
[52] Mansuy R., Yor M., Aspects of Brownian Motion, Springer-Verlag, Berlin, 2008, 195 pp. | MR | Zbl
[53] Nazarov A. I., Nikitin Ya. Yu., “Exact $L_2$-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems”, Probab. Theory Related Fields, 129:4 (2004), 469–494 | DOI | MR | Zbl
[54] Nazarov A. I., “Exact $L_2$-small ball asymptotics of Gaussian processes and the spectrum of boundary-value problems”, J. Theoret. Probab., 22 (2009), 640–665 | DOI | MR | Zbl
[55] Pitman J., “One-dimensional Brownian motion and the three-dimensional Bessel process”, Adv. Appl. Prob., 7 (1975), 511–526 | DOI | MR | Zbl
[56] Pitman J., Yor M., “Quelques identités en loi pour les processus de Bessel”, Astérisque, 236, 1976, 249–276 | MR
[57] Pitman J., Yor M., “The law of the maximum of a Bessel bridge”, Electron. J. Probab., 4 (1999), 1–35 | MR
[58] Revuz D., Yor M., Continuous Martingales and Brownian Motion, 2nd ed, Springer, Berlin, 2001, 602 pp. | MR
[59] Rogers L. C. G., Williams D., Diffusions, Markov Processes and Martingales, v. 2, Cambridge University Press, Cambridge, 2000, 494 pp.
[60] van der Vaart A. W., van Zanten H., “Rates of contraction of posterior distributions based on Gaussian process priors”, Ann. Statist., 36:3 (2008), 1435–1463 | DOI | MR | Zbl
[61] Williams D., “Decomposing the Brownian path”, Bull. Amer. Math. Soc., 76 (1970), 871–873 | DOI | MR | Zbl
[62] Zolotarev V. M., “Gaussian measure asymptotics in $l_2$ on a set of centered spheres with radii tending to zero”, 12th Europ. Meeting of Statisticians, Varna, 1979, 254