Modeling the genetic algorithm by a nonhomogeneous Markov chain: weak and strong ergodicity
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 1, pp. 185-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2012_57_1_a10,
     author = {V. S. Campos and A. G. Pereira and J. A. Rojas Cruz},
     title = {Modeling the genetic algorithm by a nonhomogeneous {Markov} chain: weak and strong ergodicity},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {185--192},
     year = {2012},
     volume = {57},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a10/}
}
TY  - JOUR
AU  - V. S. Campos
AU  - A. G. Pereira
AU  - J. A. Rojas Cruz
TI  - Modeling the genetic algorithm by a nonhomogeneous Markov chain: weak and strong ergodicity
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 185
EP  - 192
VL  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a10/
LA  - en
ID  - TVP_2012_57_1_a10
ER  - 
%0 Journal Article
%A V. S. Campos
%A A. G. Pereira
%A J. A. Rojas Cruz
%T Modeling the genetic algorithm by a nonhomogeneous Markov chain: weak and strong ergodicity
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 185-192
%V 57
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a10/
%G en
%F TVP_2012_57_1_a10
V. S. Campos; A. G. Pereira; J. A. Rojas Cruz. Modeling the genetic algorithm by a nonhomogeneous Markov chain: weak and strong ergodicity. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 1, pp. 185-192. http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a10/

[1] Cerf R., “A new genetic algorithm”, Ann. Appl. Probab., 6:3 (1996), 778–817 | DOI | MR | Zbl

[2] Cerf R., “Asymptotic convergence of genetic algorithms”, Adv. Appl. Prob., 30:2 (1998), 521–550 | DOI | MR | Zbl

[3] Rojas Cruz J. A., Dorea C. C. Y., “Approximation results for non-homogeneous Markov chains and some applications”, The Indian J. Stat., 66, Part 2 (2004), 243–252 | MR | Zbl

[4] Eiben A. E., Aarts E. H. L., Van Hee K. M., “Global convergence of genetic algorithms: A Markov chain analysis”, Parallel Problem Solving from Nature, eds. H. P. Schewefel and R. Männer, Springer, Berlin and Heidelberg, 4–12 | MR

[5] Fogel D. B., Evolving Artificial Intelligence, PhD dissert, University of California, San Diego, 1992 | Zbl

[6] Holland J. H., Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, 1975 | MR

[7] Isaacson R. L., Madsen R. W., Markov Chains, Theory and Applications, Wiley, New York, 1976 | MR

[8] Rudolph G., “Convergence analysis of canonical genetic algorithms”, IEEE Transactions on Neural Networks, 5 (1994), 96–101 | DOI