@article{TVP_2012_57_1_a10,
author = {V. S. Campos and A. G. Pereira and J. A. Rojas Cruz},
title = {Modeling the genetic algorithm by a nonhomogeneous {Markov} chain: weak and strong ergodicity},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {185--192},
year = {2012},
volume = {57},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a10/}
}
TY - JOUR AU - V. S. Campos AU - A. G. Pereira AU - J. A. Rojas Cruz TI - Modeling the genetic algorithm by a nonhomogeneous Markov chain: weak and strong ergodicity JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2012 SP - 185 EP - 192 VL - 57 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a10/ LA - en ID - TVP_2012_57_1_a10 ER -
%0 Journal Article %A V. S. Campos %A A. G. Pereira %A J. A. Rojas Cruz %T Modeling the genetic algorithm by a nonhomogeneous Markov chain: weak and strong ergodicity %J Teoriâ veroâtnostej i ee primeneniâ %D 2012 %P 185-192 %V 57 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a10/ %G en %F TVP_2012_57_1_a10
V. S. Campos; A. G. Pereira; J. A. Rojas Cruz. Modeling the genetic algorithm by a nonhomogeneous Markov chain: weak and strong ergodicity. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 1, pp. 185-192. http://geodesic.mathdoc.fr/item/TVP_2012_57_1_a10/
[1] Cerf R., “A new genetic algorithm”, Ann. Appl. Probab., 6:3 (1996), 778–817 | DOI | MR | Zbl
[2] Cerf R., “Asymptotic convergence of genetic algorithms”, Adv. Appl. Prob., 30:2 (1998), 521–550 | DOI | MR | Zbl
[3] Rojas Cruz J. A., Dorea C. C. Y., “Approximation results for non-homogeneous Markov chains and some applications”, The Indian J. Stat., 66, Part 2 (2004), 243–252 | MR | Zbl
[4] Eiben A. E., Aarts E. H. L., Van Hee K. M., “Global convergence of genetic algorithms: A Markov chain analysis”, Parallel Problem Solving from Nature, eds. H. P. Schewefel and R. Männer, Springer, Berlin and Heidelberg, 4–12 | MR
[5] Fogel D. B., Evolving Artificial Intelligence, PhD dissert, University of California, San Diego, 1992 | Zbl
[6] Holland J. H., Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, 1975 | MR
[7] Isaacson R. L., Madsen R. W., Markov Chains, Theory and Applications, Wiley, New York, 1976 | MR
[8] Rudolph G., “Convergence analysis of canonical genetic algorithms”, IEEE Transactions on Neural Networks, 5 (1994), 96–101 | DOI