$q$-Wiener and $(\alpha, q)$-Ornstein–Uhlenbeck processes. A generalization of known processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 742-772 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_4_a8,
     author = {P. J. Szab{\l}owski},
     title = {$q${-Wiener} and $(\alpha, q)${-Ornstein{\textendash}Uhlenbeck} processes. {A} generalization of known processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {742--772},
     year = {2011},
     volume = {56},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a8/}
}
TY  - JOUR
AU  - P. J. Szabłowski
TI  - $q$-Wiener and $(\alpha, q)$-Ornstein–Uhlenbeck processes. A generalization of known processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 742
EP  - 772
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a8/
LA  - en
ID  - TVP_2011_56_4_a8
ER  - 
%0 Journal Article
%A P. J. Szabłowski
%T $q$-Wiener and $(\alpha, q)$-Ornstein–Uhlenbeck processes. A generalization of known processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 742-772
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a8/
%G en
%F TVP_2011_56_4_a8
P. J. Szabłowski. $q$-Wiener and $(\alpha, q)$-Ornstein–Uhlenbeck processes. A generalization of known processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 742-772. http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a8/

[1] Bryc W., “Stationary random fields with linear regressions”, Ann. Probab., 29:1 (2001), 504–519 | DOI | MR | Zbl

[2] Bryc W., “Stationary Markov chains with linear regressions”, Stochastic Process. Appl., 93:2 (2001), 339–348 | DOI | MR | Zbl

[3] Bryc W., Matysiak W., Szabłowski P. J., “Probabilistic aspects of Al-Salam–Chihara polynomials”, Proc. Amer. Math. Soc., 133:4 (2005), 1127–1134 | DOI | MR | Zbl

[4] Bressoud D. M., “A simple proof of Mehler's formula for $q$-Hermite polynomials”, Indiana Univ. Math. J., 29:4 (1980), 577–580 | DOI | MR | Zbl

[5] Ismail M. E. H., Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, Cambridge, 2005, 706 pp. | MR

[6] Andrews G. E., Askey R., Roy R., Special Functions, Cambridge University Press, Cambridge, 1999, 664 pp. | MR | Zbl

[7] Matysiak W., Szabłowski P. J., “A few remarks on Bryc's paper on random fields with linear regressions”, Ann. Probab., 30:3 (2002), 1486–1491 | DOI | MR | Zbl

[8] Matysiak W., Szabłowski P. J., Bryc's random fields: the existence and distributions analysis, 2005, arXiv: math/0507296

[9] Bryc W., Wesołowski J., “Conditional moments of $q$-Meixner processes”, Probab. Theory Related Fields, 131:3 (2005), 415–441 | DOI | MR | Zbl

[10] Bryc W., Wesołowski J., “Bi-Poisson process”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10:2 (2007), 277–291 | DOI | MR | Zbl

[11] Bo.{z}ejko M., Bryc W., “On a class of free Lévy laws related to a regression problem”, J. Funct. Anal., 236:1 (2006), 59–77 | DOI | MR

[12] Anshelevich M., Belinschi S. T., Bo.{z}ejko M., Lehner F., “Free infinite divisibility for $q$-Gaussians”, Math. Res. Lett., 17:5 (2010), 905–916 | MR | Zbl

[13] Bryc W., Matysiak W., Wesołowski J., “The bi-Poisson process: a quadratic harness”, Ann. Probab., 36:2 (2008), 623–646 | DOI | MR | Zbl

[14] Szabłowski P. J., “Probabilistic implications of symmetries of $q$-Hermite and Al-Salam–Chihara polynomials”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 11:4 (2008), 513–522 | DOI | MR | Zbl

[15] Szabłowski P. J., “Multidimensional $q$-normal and related distributions — Markov case”, Electron. J. Probab., 15:40 (2010), 1296–1318 | MR | Zbl

[16] Szabłowski P. J., “On the structure and probabilistic interpretation of Askey–Wilson densities and polynomials with complex parameters”, J. Funct. Anal., 261:3 (2011), 635–659 http://arxiv.org/abs/1011.1541. | DOI | MR | Zbl

[17] Szabłowski P. J., “Expansions of one density via polynomials orthogonal with respect to the other”, J. Math. Anal. Appl., 383:1 (2011), 35–54 ; arXiv: 1011.1492 | DOI | MR | Zbl

[18] Szabłowski P. J., “$q$-Gaussian distributions: simplifications and simulations”, J. Probab. Statist., 2009, 752430, 18 pp. | MR | Zbl

[19] Wesołowski J., “A martingale characterization of the Wiener process”, Statist. Probab. Lett., 10:3 (1990), 213–215 | DOI | MR | Zbl

[20] Bo.{z}ejko M., Kümmerer B., Speicher R., “$q$-Gaussian processes: non-commutative and classical aspects”, Comm. Math. Phys., 185:1 (1997), 129–154 | DOI | MR

[21] Anshelevich M., “$q$-Lévy processes”, J. Reine Angew. Math., 576 (2004), 181–207 | DOI | MR | Zbl

[22] Anshelevich M., Generators of some non-commutative stochastic processes, 2011, arXiv: 1104.1381

[23] Bryc W., “Classical versions of $q$-Gaussian processes: conditional moments and Bell's inequality”, Comm. Math. Phys., 219:2 (2001), 259–270 | DOI | MR | Zbl

[24] Venttsel A. D., Kurs teorii sluchainykh protsessov, Nauka, M., 1975, 319 pp.