Merging to semistable processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 726-741 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_4_a7,
     author = {I. Fazekas},
     title = {Merging to semistable processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {726--741},
     year = {2011},
     volume = {56},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a7/}
}
TY  - JOUR
AU  - I. Fazekas
TI  - Merging to semistable processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 726
EP  - 741
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a7/
LA  - en
ID  - TVP_2011_56_4_a7
ER  - 
%0 Journal Article
%A I. Fazekas
%T Merging to semistable processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 726-741
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a7/
%G en
%F TVP_2011_56_4_a7
I. Fazekas. Merging to semistable processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 726-741. http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a7/

[1] Berkes I., Csáki E., Csörgő S., Megyesi S., “Almost sure limit theorems for sums and maxima from the domain of geometric partial attraction of semistable laws”, Limit Theorems in Probability and Statistics, v. I, eds. I. Berkes, E. Csáki, and M. Csörgő, János Bolyai Math. Soc., Budapest, 2002, 133–157 | MR | Zbl

[2] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp.

[3] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge University Press, Cambridge, 1987, 491 pp. | MR | Zbl

[4] Chow Y. S., Teicher H., Probability Theory. Independence, Interchangeability, Martingales, Springer-Verlag, New York–Heidelberg, 1978, 455 pp. | MR

[5] Csörgő S., “A probabilistic approach to domains of partial attraction”, Adv. Appl. Math., 11:3 (1990), 282–327 | DOI | MR

[6] Csörgő S., Haeusler E., Mason D. M., “A probabilistic approach to the asymptotic distribution of sums of independent, identically distributed random variables”, Adv. Appl. Math., 9:3 (1988), 259–333 | DOI | MR

[7] Csörgő S., Megyesi Z., “Merging to semistable laws”, Teoriya veroyatn. i ee primen., 47:1 (2002), 90–109 | MR

[8] Davydov Y., Rotar V., “On asymptotic proximity of distributions”, J. Theoret. Probab., 22:1 (2009), 82–98 | DOI | MR | Zbl

[9] Dudley R. M., Real Analysis and Probability, Wadsworth Brooks/Cole, Pacific Grove, 1989, 436 pp. | MR | Zbl

[10] Fazekas I., Chuprunov A., “An almost sure functional limit theorem for the domain of geometric partial attraction of semistable laws”, J. Theoret. Probab., 20:2 (2007), 339–353 | DOI | MR

[11] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1965, 655 pp.

[12] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, M.–L., 1949, 264 pp.

[13] Grinevich I. V., Khokhlov Yu. S., “Oblasti prityazheniya poluustoichivykh zakonov”, Teoriya veroyatn. i ee primen., 40:2 (1995), 417–422 | MR | Zbl

[14] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, v. 1, 2, Nauka, M., 1994, 542 s., 366 pp.

[15] Kevei P., Csörgő S., “Merging of linear combinations to semistable laws”, J. Theoret. Probab., 22:3 (2009), 772–790 | DOI | MR | Zbl

[16] Kruglov V. M., “Ob odnom rasshirenii klassa ustoichivykh raspredelenii”, Teoriya veroyatn. i ee primen., 17:4 (1972), 723–732 | MR | Zbl

[17] Lévy P., Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1937

[18] Megyesi Z., “A probabilistic approach to semistable laws and their domains of partial attraction”, Acta Sci. Math. (Szeged), 66:1–2 (2000), 403–434 | MR | Zbl

[19] Prokhorov Yu. V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1:2 (1956), 177–238 | MR | Zbl

[20] Sato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999, 486 pp. | MR

[21] Skorokhod A. V., “Predelnye teoremy dlya sluchainykh protsessov”, Teoriya veroyatn. i ee primen., 1:3 (1956), 289–319 | MR | Zbl