@article{TVP_2011_56_4_a5,
author = {A. M. Zubkov and N. A. Kharitonova and E. V. Hil},
title = {Distances between local maximums in sequences of random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {690--703},
year = {2011},
volume = {56},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a5/}
}
TY - JOUR AU - A. M. Zubkov AU - N. A. Kharitonova AU - E. V. Hil TI - Distances between local maximums in sequences of random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2011 SP - 690 EP - 703 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a5/ LA - ru ID - TVP_2011_56_4_a5 ER -
A. M. Zubkov; N. A. Kharitonova; E. V. Hil. Distances between local maximums in sequences of random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 690-703. http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a5/
[1] Kuketayev A., “Probability distribution of distances between local extrema of random number series”, Vestnik Karagand. un-ta, ser. Fizika, 62:2 (2011), 21–34; (2006), arXiv: math/0611130
[2] Kharitonova N. A., Raspredeleniya rasstoyanii mezhdu lokalnymi maksimumami sluchainoi posledovatelnosti \, Dipl. rabota, mekh.-mat. f-t MGU, 2009, 15 pp.
[3] Bernshtein S. N., “Rasprostranenie predelnoi teoremy teorii veroyatnostei na summy zavisimykh velichin”, Uspekhi matem. nauk, 1944, no. 10, 65–114
[4] Cramér H., Wold H., “Some theorems on distribution functions”, J. London Math. Soc., 11 (1936), 290–294 | DOI
[5] Zubkov A. M., Sevastyanov B. A., Chistyakov V. P., Sbornik zadach po teorii veroyatnostei, Nauka, M., 1989, 320 pp.
[6] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.
[7] Oshanin G., Voituriez R., Nechaev S., Vasilyev O., Hivert F., “Random patterns generated by random permutations of natural numbers”, Eur. Phys. J. Special Topics, 143 (2007), 143–157 ; (2006), arXiv: cond-mat/0609718 | DOI
[8] Stanley R., “Longest alternating subsequences of permutations”, Michigan Math. J., 57 (2008), 675–687 | DOI | MR | Zbl