On the convergence rate of the solution of differential equation perturbed by “physical” white noise and the solution of corresponding diffusion equation. Exponential mixing
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 656-675 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_4_a3,
     author = {B. V. Bondarev and S. M. Kozyr},
     title = {On the convergence rate of the solution of differential equation perturbed by {\textquotedblleft}physical{\textquotedblright} white noise and the solution of corresponding diffusion equation. {Exponential} mixing},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {656--675},
     year = {2011},
     volume = {56},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a3/}
}
TY  - JOUR
AU  - B. V. Bondarev
AU  - S. M. Kozyr
TI  - On the convergence rate of the solution of differential equation perturbed by “physical” white noise and the solution of corresponding diffusion equation. Exponential mixing
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 656
EP  - 675
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a3/
LA  - ru
ID  - TVP_2011_56_4_a3
ER  - 
%0 Journal Article
%A B. V. Bondarev
%A S. M. Kozyr
%T On the convergence rate of the solution of differential equation perturbed by “physical” white noise and the solution of corresponding diffusion equation. Exponential mixing
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 656-675
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a3/
%G ru
%F TVP_2011_56_4_a3
B. V. Bondarev; S. M. Kozyr. On the convergence rate of the solution of differential equation perturbed by “physical” white noise and the solution of corresponding diffusion equation. Exponential mixing. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 656-675. http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a3/

[1] Liptser R. Sh., Shiryaev A. N., “Martingaly i predelnye teoremy dlya sluchainykh protsessov”, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napr., 45, VINITI, M., 1989, 159–251

[2] Bondarev B. V., “O neravenstve Kolmogorova–Gaeka–Reni dlya normirovannykh integralov ot protsessov so slaboi zavisimostyu”, Teoriya veroyatn. i ee primen., 42:2 (1997), 225–238 | MR | Zbl

[3] Bondarev B. V., Zubko M. L., “Pro otsinku shvidkosti zbizhnosti v printsipi invariantnosti”, Visnik Kiivskogo universitetu. Ser. Fiziko-matematichni nauki, 2001, no. 4, 104–113

[4] Utev S. A., “Neravenstva dlya summ slabozavisimykh sluchainykh velichin i otsenki skorosti skhodimosti v printsipe invariantnosti”, Trudy In-ta matem. SO AN SSSR, 3 (1984), 50–77 | Zbl

[5] Davydov Yu. A., “O skhodimosti raspredelenii, porozhdennykh statsionarnymi sluchainymi protsessami”, Teoriya veroyatn. i ee primen., 13:4 (1968), 730–737 | MR

[6] Chikin D. O., “Funktsionalnaya predelnaya teorema dlya statsionarnykh protsessov: martingalnyi podkhod”, Teoriya veroyatn. i ee primen., 34:4 (1989), 731–741 | MR

[7] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, v. 2, Fizmatlit, M., 1994, 368 pp.

[8] Skorokhod A. V., Asimptoticheskie metody teorii stokhasticheskikh differentsialnykh uravnenii, Naukova dumka, Kiev, 1987, 328 pp.

[9] Bondarev B. V., Zoobko M. L., “The application of the invariance principle for stationary sequences with mixing”, Prikladna statistika. Aktuarna ta finansova matematika, 2001, no. 1, 49–59 | Zbl

[10] Bondarev B. V., Kozyr S. M., “Ob otsenke skorosti sblizheniya resheniya obyknovennogo differentsialnogo uravneniya, vozmuschennogo fizicheskim belym shumom, i resheniya sootvetstvuyuschego uravneniya Ito. I”, Prikladna statistika. Aktuarna ta finansova matematika, 2006, no. 2, 63–91

[11] Bondarev B. V., Kozyr S. M., “Ob otsenke skorosti sblizheniya resheniya obyknovennogo differentsialnogo uravneniya, vozmuschennogo fizicheskim belym shumom, i resheniya sootvetstvuyuschego uravneniya Ito. II”, Prikladna statistika. Aktuarna ta finansova matematika, 2007, no. 1, 54–82 | MR | Zbl

[12] Veretennikov A. Yu., Klokov S. A., “O subeksponentsialnoi skorosti peremeshivaniya dlya markovskikh protsessov”, Teoriya veroyatn. i ee primen., 49:1 (2004), 21–35 | Zbl

[13] Veretennikov A. Yu., “Ob otsenkakh skorosti peremeshivaniya dlya stokhasticheskikh differentsialnykh uravnenii”, Teoriya veroyatn. i ee primen., 32:2 (1987), 299–308 | MR

[14] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968, 354 pp.

[15] Pardoux E., Veretennikov A. Yu., “On the Poisson equation and diffusion approximation. I”, Ann. Probab., 29:3 (2001), 1061–1085 | DOI | MR | Zbl

[16] Devroi L., Dërfi L., Neparametricheskoe otsenivanie plotnosti. $L_1$-podkhod, Mir, M., 1988, 408 pp.

[17] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1982, 612 pp.

[18] Bondarev B. V., Kovtun E. E., “Otsenka skorosti sblizheniya v obyknovennykh differentsialnykh uravneniyakh, nakhodyaschikhsya pod vozdeistviem sluchainykh protsessov s bystrym vremenem”, Ukr. matem. zhurn., 57:4 (2005), 435–457 | MR | Zbl

[19] Ibragimov I. A., Rozanov Yu. A., Gaussovskie sluchainye protsessy, Nauka, M., 1970, 384 pp.

[20] Berkes I., Philipp W., “Approximation theorems for independent and weakly dependent random vectors”, Ann. Probab., 1:1 (1979), 29–54 | DOI | MR

[21] Sakhanenko A. I., “Skorost skhodimosti v printsipe invariantnosti dlya raznoraspredelennykh velichin s eksponentsialnymi momentami”, Tr. In-ta matem. SO AN SSSR, 3 (1984), 4–49

[22] Sakhanenko A. I., “Otsenki v printsipe invariantnosti”, Tr. In-ta matem. SO AN SSSR, 5 (1985), 27–44

[23] Bondarev B. V., Kolosov A. A., “K voprosu o printsipe invariantnosti dlya slabozavisimykh sluchainykh velichin”, Prikladna statistika. Aktuarna ta finansova matematika, 2002, no. 2, 63–71 | MR

[24] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 414 pp.

[25] Kolosov A. A., “O postroenii vinerovskogo protsessa po konechnoi posledovatelnosti nezavisimykh gaussovskikh velichin”, Prikladna statistika. Aktuarna ta finansova matematika, 2007, no. 1, 97–100

[26] Krasnoselskii M. A., Pokrovskii A. V., Sistemy s gisterezisom, Nauka, M., 1983, 272 pp.