@article{TVP_2011_56_4_a3,
author = {B. V. Bondarev and S. M. Kozyr},
title = {On the convergence rate of the solution of differential equation perturbed by {\textquotedblleft}physical{\textquotedblright} white noise and the solution of corresponding diffusion equation. {Exponential} mixing},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {656--675},
year = {2011},
volume = {56},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a3/}
}
TY - JOUR AU - B. V. Bondarev AU - S. M. Kozyr TI - On the convergence rate of the solution of differential equation perturbed by “physical” white noise and the solution of corresponding diffusion equation. Exponential mixing JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2011 SP - 656 EP - 675 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a3/ LA - ru ID - TVP_2011_56_4_a3 ER -
%0 Journal Article %A B. V. Bondarev %A S. M. Kozyr %T On the convergence rate of the solution of differential equation perturbed by “physical” white noise and the solution of corresponding diffusion equation. Exponential mixing %J Teoriâ veroâtnostej i ee primeneniâ %D 2011 %P 656-675 %V 56 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a3/ %G ru %F TVP_2011_56_4_a3
B. V. Bondarev; S. M. Kozyr. On the convergence rate of the solution of differential equation perturbed by “physical” white noise and the solution of corresponding diffusion equation. Exponential mixing. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 656-675. http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a3/
[1] Liptser R. Sh., Shiryaev A. N., “Martingaly i predelnye teoremy dlya sluchainykh protsessov”, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundam. napr., 45, VINITI, M., 1989, 159–251
[2] Bondarev B. V., “O neravenstve Kolmogorova–Gaeka–Reni dlya normirovannykh integralov ot protsessov so slaboi zavisimostyu”, Teoriya veroyatn. i ee primen., 42:2 (1997), 225–238 | MR | Zbl
[3] Bondarev B. V., Zubko M. L., “Pro otsinku shvidkosti zbizhnosti v printsipi invariantnosti”, Visnik Kiivskogo universitetu. Ser. Fiziko-matematichni nauki, 2001, no. 4, 104–113
[4] Utev S. A., “Neravenstva dlya summ slabozavisimykh sluchainykh velichin i otsenki skorosti skhodimosti v printsipe invariantnosti”, Trudy In-ta matem. SO AN SSSR, 3 (1984), 50–77 | Zbl
[5] Davydov Yu. A., “O skhodimosti raspredelenii, porozhdennykh statsionarnymi sluchainymi protsessami”, Teoriya veroyatn. i ee primen., 13:4 (1968), 730–737 | MR
[6] Chikin D. O., “Funktsionalnaya predelnaya teorema dlya statsionarnykh protsessov: martingalnyi podkhod”, Teoriya veroyatn. i ee primen., 34:4 (1989), 731–741 | MR
[7] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, v. 2, Fizmatlit, M., 1994, 368 pp.
[8] Skorokhod A. V., Asimptoticheskie metody teorii stokhasticheskikh differentsialnykh uravnenii, Naukova dumka, Kiev, 1987, 328 pp.
[9] Bondarev B. V., Zoobko M. L., “The application of the invariance principle for stationary sequences with mixing”, Prikladna statistika. Aktuarna ta finansova matematika, 2001, no. 1, 49–59 | Zbl
[10] Bondarev B. V., Kozyr S. M., “Ob otsenke skorosti sblizheniya resheniya obyknovennogo differentsialnogo uravneniya, vozmuschennogo fizicheskim belym shumom, i resheniya sootvetstvuyuschego uravneniya Ito. I”, Prikladna statistika. Aktuarna ta finansova matematika, 2006, no. 2, 63–91
[11] Bondarev B. V., Kozyr S. M., “Ob otsenke skorosti sblizheniya resheniya obyknovennogo differentsialnogo uravneniya, vozmuschennogo fizicheskim belym shumom, i resheniya sootvetstvuyuschego uravneniya Ito. II”, Prikladna statistika. Aktuarna ta finansova matematika, 2007, no. 1, 54–82 | MR | Zbl
[12] Veretennikov A. Yu., Klokov S. A., “O subeksponentsialnoi skorosti peremeshivaniya dlya markovskikh protsessov”, Teoriya veroyatn. i ee primen., 49:1 (2004), 21–35 | Zbl
[13] Veretennikov A. Yu., “Ob otsenkakh skorosti peremeshivaniya dlya stokhasticheskikh differentsialnykh uravnenii”, Teoriya veroyatn. i ee primen., 32:2 (1987), 299–308 | MR
[14] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968, 354 pp.
[15] Pardoux E., Veretennikov A. Yu., “On the Poisson equation and diffusion approximation. I”, Ann. Probab., 29:3 (2001), 1061–1085 | DOI | MR | Zbl
[16] Devroi L., Dërfi L., Neparametricheskoe otsenivanie plotnosti. $L_1$-podkhod, Mir, M., 1988, 408 pp.
[17] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1982, 612 pp.
[18] Bondarev B. V., Kovtun E. E., “Otsenka skorosti sblizheniya v obyknovennykh differentsialnykh uravneniyakh, nakhodyaschikhsya pod vozdeistviem sluchainykh protsessov s bystrym vremenem”, Ukr. matem. zhurn., 57:4 (2005), 435–457 | MR | Zbl
[19] Ibragimov I. A., Rozanov Yu. A., Gaussovskie sluchainye protsessy, Nauka, M., 1970, 384 pp.
[20] Berkes I., Philipp W., “Approximation theorems for independent and weakly dependent random vectors”, Ann. Probab., 1:1 (1979), 29–54 | DOI | MR
[21] Sakhanenko A. I., “Skorost skhodimosti v printsipe invariantnosti dlya raznoraspredelennykh velichin s eksponentsialnymi momentami”, Tr. In-ta matem. SO AN SSSR, 3 (1984), 4–49
[22] Sakhanenko A. I., “Otsenki v printsipe invariantnosti”, Tr. In-ta matem. SO AN SSSR, 5 (1985), 27–44
[23] Bondarev B. V., Kolosov A. A., “K voprosu o printsipe invariantnosti dlya slabozavisimykh sluchainykh velichin”, Prikladna statistika. Aktuarna ta finansova matematika, 2002, no. 2, 63–71 | MR
[24] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 414 pp.
[25] Kolosov A. A., “O postroenii vinerovskogo protsessa po konechnoi posledovatelnosti nezavisimykh gaussovskikh velichin”, Prikladna statistika. Aktuarna ta finansova matematika, 2007, no. 1, 97–100
[26] Krasnoselskii M. A., Pokrovskii A. V., Sistemy s gisterezisom, Nauka, M., 1983, 272 pp.