An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 797-805

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TVP_2011_56_4_a11,
     author = {V. Yu. Korolev and S. Popov},
     title = {An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {797--805},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/}
}
TY  - JOUR
AU  - V. Yu. Korolev
AU  - S. Popov
TI  - An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 797
EP  - 805
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/
LA  - ru
ID  - TVP_2011_56_4_a11
ER  - 
%0 Journal Article
%A V. Yu. Korolev
%A S. Popov
%T An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 797-805
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/
%G ru
%F TVP_2011_56_4_a11
V. Yu. Korolev; S. Popov. An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 797-805. http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/