@article{TVP_2011_56_4_a11,
author = {V. Yu. Korolev and S. Popov},
title = {An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {797--805},
year = {2011},
volume = {56},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/}
}
TY - JOUR AU - V. Yu. Korolev AU - S. Popov TI - An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2011 SP - 797 EP - 805 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/ LA - ru ID - TVP_2011_56_4_a11 ER -
%0 Journal Article %A V. Yu. Korolev %A S. Popov %T An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent %J Teoriâ veroâtnostej i ee primeneniâ %D 2011 %P 797-805 %V 56 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/ %G ru %F TVP_2011_56_4_a11
V. Yu. Korolev; S. Popov. An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 797-805. http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/
[1] Bkhattachariya R. N., Ranga Rao R., Approksimatsiya normalnym raspredeleniem i asimptoticheskie razlozheniya, Nauka, M., 1982, 286 pp.
[2] Zolotarev V. M., Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986, 415 pp.
[3] Korolev V. Yu., Shevtsova I. G., “Utochnenie neravenstva Berri–Esseena s prilozheniyami k puassonovskim i smeshannym puassonovskim sluchainym summam”, Obozrenie prikl. i promyshl. matem., 17:1 (2010), 25–56 | MR
[4] Nefedova Yu. S., Shevtsova I. G., “O neravnomernykh otsenkakh skorosti skhodimosti v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen. (to appear)
[5] Osipov L. V., “Utochnenie teoremy Lindeberga”, Teoriya veroyatn. i ee primen., 11:2 (1966), 339–342 | MR | Zbl
[6] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 317 pp.
[7] Shevtsova I. G., “Utochnenie otsenok skorosti skhodimosti v teoreme Lyapunova”, Dokl. RAN, 435:1 (2010), 26–28 | MR
[8] Barbour A. D., Hall P., “Stein's method and the Berry–Esseen theorem”, Austral. J. Statist., 26 (1984), 8–15 | DOI | MR | Zbl
[9] Chen L. H. Y., Shao Q. M., “A non-uniform Berry–Esseen bound via Stein's method”, Probab. Theory Related Fields, 120:2 (2001), 236–254 | DOI | MR | Zbl
[10] Feller W., “On the Berry–Esseen theorem”, Z. Wahrscheinlichkeitstheor. verw. Geb., 10 (1968), 261–268 | DOI | MR | Zbl
[11] Hoeffding W., “The extrema of the expected value of a function of independent random variables”, Ann. Math. Statist., 26:2 (1955), 268–275 | DOI | MR | Zbl
[12] Paditz L., “Bemerkungen zu einer Fehlerabschätzung im zentralen Grenzwertsatz”, Wiss. Z. Hochsch. Verkehrswesen “Friedrich List” Dresden, 27:4 (1980), 829–837 | MR | Zbl
[13] Paditz L., “On error-estimates in the central limit theorem for generalized linear discounting”, Math. Operationsforsch. Statist., Ser. Statist., 15:4 (1984), 601–610 | DOI | MR | Zbl
[14] Paditz L., “Über eine globale Fehlerabsch\protectätzung im zentralen Grenzwertsatz”, Wiss. Z. Hochsch. Verkehrswesen “Friedrich List” Dresden, 33:2 (1986), 399–404 | MR | Zbl