An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 797-805 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_4_a11,
     author = {V. Yu. Korolev and S. Popov},
     title = {An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {797--805},
     year = {2011},
     volume = {56},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/}
}
TY  - JOUR
AU  - V. Yu. Korolev
AU  - S. Popov
TI  - An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 797
EP  - 805
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/
LA  - ru
ID  - TVP_2011_56_4_a11
ER  - 
%0 Journal Article
%A V. Yu. Korolev
%A S. Popov
%T An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 797-805
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/
%G ru
%F TVP_2011_56_4_a11
V. Yu. Korolev; S. Popov. An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 797-805. http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/

[1] Bkhattachariya R. N., Ranga Rao R., Approksimatsiya normalnym raspredeleniem i asimptoticheskie razlozheniya, Nauka, M., 1982, 286 pp.

[2] Zolotarev V. M., Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986, 415 pp.

[3] Korolev V. Yu., Shevtsova I. G., “Utochnenie neravenstva Berri–Esseena s prilozheniyami k puassonovskim i smeshannym puassonovskim sluchainym summam”, Obozrenie prikl. i promyshl. matem., 17:1 (2010), 25–56 | MR

[4] Nefedova Yu. S., Shevtsova I. G., “O neravnomernykh otsenkakh skorosti skhodimosti v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen. (to appear)

[5] Osipov L. V., “Utochnenie teoremy Lindeberga”, Teoriya veroyatn. i ee primen., 11:2 (1966), 339–342 | MR | Zbl

[6] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 317 pp.

[7] Shevtsova I. G., “Utochnenie otsenok skorosti skhodimosti v teoreme Lyapunova”, Dokl. RAN, 435:1 (2010), 26–28 | MR

[8] Barbour A. D., Hall P., “Stein's method and the Berry–Esseen theorem”, Austral. J. Statist., 26 (1984), 8–15 | DOI | MR | Zbl

[9] Chen L. H. Y., Shao Q. M., “A non-uniform Berry–Esseen bound via Stein's method”, Probab. Theory Related Fields, 120:2 (2001), 236–254 | DOI | MR | Zbl

[10] Feller W., “On the Berry–Esseen theorem”, Z. Wahrscheinlichkeitstheor. verw. Geb., 10 (1968), 261–268 | DOI | MR | Zbl

[11] Hoeffding W., “The extrema of the expected value of a function of independent random variables”, Ann. Math. Statist., 26:2 (1955), 268–275 | DOI | MR | Zbl

[12] Paditz L., “Bemerkungen zu einer Fehlerabschätzung im zentralen Grenzwertsatz”, Wiss. Z. Hochsch. Verkehrswesen “Friedrich List” Dresden, 27:4 (1980), 829–837 | MR | Zbl

[13] Paditz L., “On error-estimates in the central limit theorem for generalized linear discounting”, Math. Operationsforsch. Statist., Ser. Statist., 15:4 (1984), 601–610 | DOI | MR | Zbl

[14] Paditz L., “Über eine globale Fehlerabsch\protectätzung im zentralen Grenzwertsatz”, Wiss. Z. Hochsch. Verkehrswesen “Friedrich List” Dresden, 33:2 (1986), 399–404 | MR | Zbl