An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 797-805
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TVP_2011_56_4_a11,
     author = {V. Yu. Korolev and S. Popov},
     title = {An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {797--805},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/}
}
                      
                      
                    TY - JOUR AU - V. Yu. Korolev AU - S. Popov TI - An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2011 SP - 797 EP - 805 VL - 56 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/ LA - ru ID - TVP_2011_56_4_a11 ER -
%0 Journal Article %A V. Yu. Korolev %A S. Popov %T An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent %J Teoriâ veroâtnostej i ee primeneniâ %D 2011 %P 797-805 %V 56 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/ %G ru %F TVP_2011_56_4_a11
V. Yu. Korolev; S. Popov. An improvement of the convergence rate estimates in the central limit theorem when moments of order greater than two are absent. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 797-805. http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a11/
