Limit theorems for systems with impatient customers under high load
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 788-796 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_4_a10,
     author = {L. G. Afanas'eva and T. N. Belorusov},
     title = {Limit theorems for systems with impatient customers under high load},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {788--796},
     year = {2011},
     volume = {56},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a10/}
}
TY  - JOUR
AU  - L. G. Afanas'eva
AU  - T. N. Belorusov
TI  - Limit theorems for systems with impatient customers under high load
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 788
EP  - 796
VL  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a10/
LA  - ru
ID  - TVP_2011_56_4_a10
ER  - 
%0 Journal Article
%A L. G. Afanas'eva
%A T. N. Belorusov
%T Limit theorems for systems with impatient customers under high load
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 788-796
%V 56
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a10/
%G ru
%F TVP_2011_56_4_a10
L. G. Afanas'eva; T. N. Belorusov. Limit theorems for systems with impatient customers under high load. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 4, pp. 788-796. http://geodesic.mathdoc.fr/item/TVP_2011_56_4_a10/

[1] Gnedenko B. V., Kovalenko I. V., Vvedenie v teoriyu massovogo obsluzhivaniya, KomKniga, M., 2005, 400 pp.

[2] Asmussen S., Applied Probability and Queues, 2nd ed., Springer-Verlag, Berlin, 2003, 438 pp. | MR

[3] Grandell J., Doubly Stochastic Poisson Processes, Springer-Verlag, Berlin, 1976, 234 pp. | MR | Zbl

[4] Asmussen S., “Ladder heights and the Markov-modulated ${M|G|1}$ queue”, Stochastic Process. Appl., 37:2 (1991), 313–326 | DOI | MR | Zbl

[5] Asmussen S., “Semi-Markov queues with heavy tails”, Semi-Markov Models and Applications, Kluwer Academic Publishers, 1999, 269–284 | DOI | MR | Zbl

[6] Borovkov A. A., Asimptoticheskie metody v teorii massovogo obsluzhivaniya, Nauka, M., 1980, 381 pp.

[7] Afanaseva L. G., Bulinskaya E. V., “Nadezhnost sistem s regeneriruyuschim potokom otkazov elementov”, Avtomat. telemekh., 7 (2010), 15–28

[8] Afanaseva L. G., “Ob ergodichnosti otkrytoi seti obsluzhivaniya”, Teoriya veroyatn. i ee primen., 32:4 (1987), 777–781 | MR

[9] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972, 369 pp.

[10] Belorusov T. N., “Ergodichnost mnogokanalnoi sistemy obsluzhivaniya s vozmozhnostyu neprisoedineniya k ocheredi”, Teoriya veroyatn. i ee primen., 56:1 (2011), 145–152 | MR

[11] Smith W. L., “Regenerative stochastic processes”, Proc. Roy. Soc., London. Ser. A, 232 (1955), 6–31 | DOI | MR | Zbl

[12] Afanaseva L. G., “Sistemy massovogo obsluzhivaniya s tsiklicheskimi upravlyayuschimi protsessami”, Kibernetika i sistemnyi analiz, 41:1 (2005), 54–68

[13] Afanaseva L. G., Bashtova E. E., “Predelnye teoremy dlya sistem obsluzhivaniya s dvazhdy stokhasticheskim puassonovskim potokom (usloviya vysokoi zagruzki)”, Probl. peredachi inform., 44:4 (2008), 72–91 | MR | Zbl

[14] Afanaseva L. G., Bashtova E. E., “Predelnye teoremy dlya sistem massovogo obsluzhivaniya v usloviyakh vysokoi zagruzki”, Sovremennye problemy matematiki i mekhaniki, 4:3 (2009), 40–54

[15] Saati T. L., Elementy teorii massovogo obsluzhivaniya i ee prilozheniya, Librokom, M., 2010, 520 pp.