@article{TVP_2011_56_3_a6,
author = {S. Vakeroudis},
title = {On hitting times of the winding processes of planar {Brownian} motion and of {Ornstein{\textendash}Uhlenbeck} processes, via {Bougerol{\textquoteright}s} identity},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {566--591},
year = {2011},
volume = {56},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a6/}
}
TY - JOUR AU - S. Vakeroudis TI - On hitting times of the winding processes of planar Brownian motion and of Ornstein–Uhlenbeck processes, via Bougerol’s identity JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2011 SP - 566 EP - 591 VL - 56 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a6/ LA - en ID - TVP_2011_56_3_a6 ER -
%0 Journal Article %A S. Vakeroudis %T On hitting times of the winding processes of planar Brownian motion and of Ornstein–Uhlenbeck processes, via Bougerol’s identity %J Teoriâ veroâtnostej i ee primeneniâ %D 2011 %P 566-591 %V 56 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a6/ %G en %F TVP_2011_56_3_a6
S. Vakeroudis. On hitting times of the winding processes of planar Brownian motion and of Ornstein–Uhlenbeck processes, via Bougerol’s identity. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 3, pp. 566-591. http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a6/
[1] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979, 830 pp.
[2] Alili L., Dufresne D., Yor M., “Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement brownien avec drift”, Exponential Functionals and Principal Values Related to Brownian Motion, Univ. Autónoma de Madrid, Madrid, 1997, 3–14 | MR | Zbl
[3] André D., “Solution directe du problème résolu par M. Bertrand”, C.R. Acad. Sci. Paris, 105 (1887), 436–437
[4] Bentkus V., Pap G., Yor M., “Optimal bounds for Cauchy approximations for the winding distribution of planar Brownian motion”, J. Theoret. Probab., 16:2 (2003), 345–361 | DOI | MR | Zbl
[5] Bertoin J., Werner W., “Asymptotic windings of planar Brownian motion revisited via the Ornstein–Uhlenbeck process”, Lecture Notes in Math., 1583, 1994, 138–152 | DOI | MR | Zbl
[6] Biane P., Yor M., “Valeurs principales associées aux temps locaux browniens”, Bull. Sci. Math., 111:1 (1987), 23–101 | MR | Zbl
[7] Billingsley P., Probability and Measure, 3rd ed., Wiley, New York, 1995, 593 pp. | MR | Zbl
[8] Bougerol Ph., “Exemples de théorèmes locaux sur les groupes résolubles”, Ann. Inst. H. Poincaré, 19:4 (1983), 369–391 | MR | Zbl
[9] Burkholder D., “Exit times of Brownian motion, harmonic majorization, and Hardy spaces”, Adv. in Math., 26:2 (1977), 182–205 | DOI | MR | Zbl
[10] Chaumont L., Yor M., Exercises in Probability: A Guided Tour from Measure Theory to Random Processes, via Conditioning, Cambridge Univ. Press, Cambridge, 2003, 236 pp. | MR | Zbl
[11] Comtet A., Monthus C., Yor M., “Exponential functionals of Brownian motion and disordered systems”, J. Appl. Probab., 35:2 (1998), 255–271 | DOI | MR | Zbl
[12] Donati-Martin C., Matsumoto H., Yor M., “On positive and negative moments of the integral of geometric Brownian motions”, Statist. Probab. Lett., 49 (2000), 45–52 | DOI | MR | Zbl
[13] Dufresne D., “Laguerre series for Asian and other options”, Math. Finance, 10:4 (2000), 407–428 | DOI | MR | Zbl
[14] Dufresne D., Yor M., A two-dimensional extension of Bougerol's identity in law for the exponential functional of Brownian motion: the story so far (to appear)
[15] Durrett R., “A new proof of Spitzer's result on the winding of 2-dimensional Brownian motion”, Ann. Probab., 10:1 (1982), 244–246 | DOI | MR | Zbl
[16] Gallardo L., Mouvement brownien et calcul d'Itô, Hermann, Paris, 2008, 240 pp.
[17] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, ryadov i proizvedenii, Nauka, M., 1971, 1108 pp.
[18] Ishiyama K., “Methods for evaluating density functions of exponential functionals represented as integrals of geometric Brownian motion”, Methodol. Comput. Appl. Probab., 7:3 (2005), 271–283 | DOI | MR | Zbl
[19] Ito K., Makkin G., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968, 394 pp.
[20] Le Gall J. F., “Some properties of planar Brownian motion”, Lecture Notes in Math., 1527, 1992, 111–235 | DOI | MR | Zbl
[21] Le Gall J. F., Yor M., “Etude asymptotique des enlacements du mouvement brownien autour des droites de l'espace”, Probab. Theory Related Fields, 74 (1987), 617–635 | DOI | MR | Zbl
[22] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M.–L., 1963, 358 pp.
[23] Lévy P., “Random functions: general theory with special reference to Laplacian random functions”, ØE uvres de Paul Lévy, v. IV, eds. D. Dugué et al., Gauthier-Villars, Paris, 1980 (paper no. 158)
[24] Mansuy R., Yor M., Aspects of Brownian Motion, Springer-Verlag, Berlin, 2008, 195 pp. | MR | Zbl
[25] Matsumoto H., Yor M., “On Bougerol and Dufresne's identities for exponential Brownian functionals”, Proc. Japan Acad. Ser. A Math. Sci., 74:10 (1998), 152–155 | DOI | MR | Zbl
[26] Matsumoto H., Yor M., “Exponential functionals of Brownian motion. I: Probability laws at fixed time”, Probab. Surveys, 2 (2005), 312–347 | DOI | MR | Zbl
[27] Messulam P., Yor M., “On D. Williams' “pinching method” and some applications”, J. London Math. Soc., 26 (1982), 348–364 | DOI | MR | Zbl
[28] Pap G., Yor M., “The accuracy of Cauchy approximation for the windings of planar Brownian motion”, Period. Math. Hungar., 41:1–2 (2000), 213–226 | DOI | MR | Zbl
[29] Pitman J. W., Yor M., “Asymptotic laws of planar Brownian motion”, Ann. Probab., 14 (1996), 733–779 | DOI | MR
[30] Pitman J. W., Yor M., “Infinitely divisible laws associated with hyperbolic functions”, Canad. J. Math., 55:2 (2003), 292–330 | DOI | MR | Zbl
[31] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer, Berlin, 1999, 602 pp. | MR | Zbl
[32] Spitzer F., “Some theorems concerning two-dimensional Brownian motion”, Trans. Amer. Math. Soc., 87 (1958), 187–197 | MR | Zbl
[33] Vallois P., “Amplitude du mouvement Brownien et juxtaposition des excursions positives et negatives”, Lecture Notes in Math., 1526, 1992, 361–373 | DOI | MR | Zbl
[34] Williams D., A simple geometric proof of Spitzer's winding number formula for 2-dimensional Brownian motion, University College, Swansea, 1974, preprint
[35] Yor M., “Loi de l'indice du lacet Brownien et distribution de Hartman–Watson”, Z. Wahrscheinlichkeitstheor. verw. Geb., 53:1 (1980), 71–95 | DOI | MR
[36] Yor M., “Une décomposition asymptotique du nombre de tours du mouvement brownien complexe”, Astérisque, 1985, no. 132, 103–126 | MR | Zbl
[37] Yor M., “Generalized meanders as limits of weighted Bessel processes, and an elementary proof of Spitzer's asymptotic result on Brownian windings”, Studia Sci. Math. Hungar., 33:1–3 (1997), 339–343 | MR | Zbl
[38] Yor M., Exponential Functionals of Brownian Motion and Related Processes, Springer-Verlag, Berlin, 2001, 205 pp. | MR