@article{TVP_2011_56_3_a5,
author = {A. G. Tartakovskii and M. Pollak and A. S. Polunchenko},
title = {Third-order asymptotic optimality of the generalized {Shiryaev{\textendash}Roberts} changepoint detection procedures},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {534--565},
year = {2011},
volume = {56},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a5/}
}
TY - JOUR AU - A. G. Tartakovskii AU - M. Pollak AU - A. S. Polunchenko TI - Third-order asymptotic optimality of the generalized Shiryaev–Roberts changepoint detection procedures JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2011 SP - 534 EP - 565 VL - 56 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a5/ LA - en ID - TVP_2011_56_3_a5 ER -
%0 Journal Article %A A. G. Tartakovskii %A M. Pollak %A A. S. Polunchenko %T Third-order asymptotic optimality of the generalized Shiryaev–Roberts changepoint detection procedures %J Teoriâ veroâtnostej i ee primeneniâ %D 2011 %P 534-565 %V 56 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a5/ %G en %F TVP_2011_56_3_a5
A. G. Tartakovskii; M. Pollak; A. S. Polunchenko. Third-order asymptotic optimality of the generalized Shiryaev–Roberts changepoint detection procedures. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 3, pp. 534-565. http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a5/
[1] Girschick M. A., Rubin H., “A Bayes approach to a quality control model”, Ann. Math. Statist., 23 (1952), 114–125 | DOI | MR
[2] Kesten H., “Random difference equations and renewal theory for products of random matrices”, Acta Mathematica, 131 (1973), 207–248 | DOI | MR | Zbl
[3] Lucas J. M., Crosier R. B., “Fast initial response for CUSUM quality-control schemes: Give your CUSUM a head start”, Technometrics, 24 (1982), 199–205 | DOI
[4] Moustakides G. V., Polunchenko A. S., Tartakovsky A. G., “A numerical approach to performance analysis of quickest change-point detection procedures”, Statist. Sinica, 21 (2011), 571–596 | DOI | MR | Zbl
[5] Moustakides G. V., Tartakovsky A. G., Near optimality of the extended Shiryaev–Roberts procedure for detecting a change in the drift of a Brownian motion, Work in Progress
[6] Pollak M., “Optimal detection of a change in distribution”, Ann. Statist., 13 (1985), 206–227 | DOI | MR | Zbl
[7] Pollak M., “Average run lengths of an optimal method of detecting a change in distribution”, Ann. Statist., 15 (1987), 749–779 | DOI | MR | Zbl
[8] Pollak M., Siegmund D., “Convergence of quasi-stationary to stationary distributions for stochastically monotone Markov processes”, J. Appl. Prob., 23 (1986), 215–220 | DOI | MR | Zbl
[9] Pollak M., Tartakovsky A. G., “Optimality properties of the Shiryaev–Roberts procedure”, Statist. Sinica, 19 (2009), 1729–1739 | MR | Zbl
[10] Polunchenko A. S., Tartakovsky A. G., “On optimality of the Shiryaev–Roberts procedure for detecting a change in distribution”, Ann. Statist., 39 (2010), 3445–3457 | DOI | MR
[11] Roberts S. W., “A comparison of some control chart procedures”, Technometrics, 8 (1966), 411–430 | DOI | MR
[12] Shiryaev A. N., “Zadacha skoreishego obnaruzheniya narusheniya statsionarnogo rezhima”, Dokl. AN SSSR, 138:5 (1961), 1039–1042 | MR | Zbl
[13] Shiryaev A. N., “Ob optimalnykh metodakh v zadachakh skoreishego obnaruzheniya”, Teoriya veroyatn. i ee primen., 8:1 (1963), 26–51 | MR | Zbl
[14] Tartakovsky A. G., Polunchenko A. S., “Minimax optimality of the Shiryaev–Roberts procedure”, Proceedings of the 5th International Workshop in Applied Probability (Madrid, 2010), Universidad Carlos III of Madrid, Spain
[15] Woodroofe M., Nonlinear Renewal Theory in Sequential Analysis, SIAM, Philadelphia, 1982, 119 pp. | MR