Third-order asymptotic optimality of the generalized Shiryaev–Roberts changepoint detection procedures
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 3, pp. 534-565 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_3_a5,
     author = {A. G. Tartakovskii and M. Pollak and A. S. Polunchenko},
     title = {Third-order asymptotic optimality of the generalized {Shiryaev{\textendash}Roberts} changepoint detection procedures},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {534--565},
     year = {2011},
     volume = {56},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a5/}
}
TY  - JOUR
AU  - A. G. Tartakovskii
AU  - M. Pollak
AU  - A. S. Polunchenko
TI  - Third-order asymptotic optimality of the generalized Shiryaev–Roberts changepoint detection procedures
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 534
EP  - 565
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a5/
LA  - en
ID  - TVP_2011_56_3_a5
ER  - 
%0 Journal Article
%A A. G. Tartakovskii
%A M. Pollak
%A A. S. Polunchenko
%T Third-order asymptotic optimality of the generalized Shiryaev–Roberts changepoint detection procedures
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 534-565
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a5/
%G en
%F TVP_2011_56_3_a5
A. G. Tartakovskii; M. Pollak; A. S. Polunchenko. Third-order asymptotic optimality of the generalized Shiryaev–Roberts changepoint detection procedures. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 3, pp. 534-565. http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a5/

[1] Girschick M. A., Rubin H., “A Bayes approach to a quality control model”, Ann. Math. Statist., 23 (1952), 114–125 | DOI | MR

[2] Kesten H., “Random difference equations and renewal theory for products of random matrices”, Acta Mathematica, 131 (1973), 207–248 | DOI | MR | Zbl

[3] Lucas J. M., Crosier R. B., “Fast initial response for CUSUM quality-control schemes: Give your CUSUM a head start”, Technometrics, 24 (1982), 199–205 | DOI

[4] Moustakides G. V., Polunchenko A. S., Tartakovsky A. G., “A numerical approach to performance analysis of quickest change-point detection procedures”, Statist. Sinica, 21 (2011), 571–596 | DOI | MR | Zbl

[5] Moustakides G. V., Tartakovsky A. G., Near optimality of the extended Shiryaev–Roberts procedure for detecting a change in the drift of a Brownian motion, Work in Progress

[6] Pollak M., “Optimal detection of a change in distribution”, Ann. Statist., 13 (1985), 206–227 | DOI | MR | Zbl

[7] Pollak M., “Average run lengths of an optimal method of detecting a change in distribution”, Ann. Statist., 15 (1987), 749–779 | DOI | MR | Zbl

[8] Pollak M., Siegmund D., “Convergence of quasi-stationary to stationary distributions for stochastically monotone Markov processes”, J. Appl. Prob., 23 (1986), 215–220 | DOI | MR | Zbl

[9] Pollak M., Tartakovsky A. G., “Optimality properties of the Shiryaev–Roberts procedure”, Statist. Sinica, 19 (2009), 1729–1739 | MR | Zbl

[10] Polunchenko A. S., Tartakovsky A. G., “On optimality of the Shiryaev–Roberts procedure for detecting a change in distribution”, Ann. Statist., 39 (2010), 3445–3457 | DOI | MR

[11] Roberts S. W., “A comparison of some control chart procedures”, Technometrics, 8 (1966), 411–430 | DOI | MR

[12] Shiryaev A. N., “Zadacha skoreishego obnaruzheniya narusheniya statsionarnogo rezhima”, Dokl. AN SSSR, 138:5 (1961), 1039–1042 | MR | Zbl

[13] Shiryaev A. N., “Ob optimalnykh metodakh v zadachakh skoreishego obnaruzheniya”, Teoriya veroyatn. i ee primen., 8:1 (1963), 26–51 | MR | Zbl

[14] Tartakovsky A. G., Polunchenko A. S., “Minimax optimality of the Shiryaev–Roberts procedure”, Proceedings of the 5th International Workshop in Applied Probability (Madrid, 2010), Universidad Carlos III of Madrid, Spain

[15] Woodroofe M., Nonlinear Renewal Theory in Sequential Analysis, SIAM, Philadelphia, 1982, 119 pp. | MR