Variations on the Berry–Esseen theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 3, pp. 514-533 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_3_a4,
     author = {B. Klartag and S. Sodin},
     title = {Variations on the {Berry{\textendash}Esseen} theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {514--533},
     year = {2011},
     volume = {56},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a4/}
}
TY  - JOUR
AU  - B. Klartag
AU  - S. Sodin
TI  - Variations on the Berry–Esseen theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 514
EP  - 533
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a4/
LA  - en
ID  - TVP_2011_56_3_a4
ER  - 
%0 Journal Article
%A B. Klartag
%A S. Sodin
%T Variations on the Berry–Esseen theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 514-533
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a4/
%G en
%F TVP_2011_56_3_a4
B. Klartag; S. Sodin. Variations on the Berry–Esseen theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 3, pp. 514-533. http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a4/

[1] Adamczak R., Litvak A. E., Pajor A., Tomczak-Jaegermann N., Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling, Preprint, arXiv: 0904.4723 | MR

[2] Barthe F., Cordero-Erausquin D., Ledoux M., Maurey M., “Correlation and Brascamp–Lieb inequalities for Markov semigroups”, Int. Math. Res. Notices, 2011 (2011), 2177–2216 | MR | Zbl

[3] Carlen E., Lieb E., Loss M., “A sharp analog of Young's inequality on $S^N$ and related entropy inequalities”, J. Geom. Anal., 4:3 (2004), 487–520 | DOI | MR

[4] Kurant R., Robbins G., Chto takoe matematika? Elementarnyi ocherk idei i metodov, 3-e izd., MTsNMO, M., 2001, 64 pp.; Courant R., Robbins R., Stewart I., What is Mathematics? An Elementary Approach to Ideas and Methods, Oxford Univ. Press, Oxford, 1996, 566 с. | MR | Zbl

[5] Diaconis P., Freedman D., “Asymptotics of graphical projection pursuit”, Ann. Statist., 12:3 (1984), 793–815 | DOI | MR | Zbl

[6] Diaconis P., Freedman D., “A dozen de Finetti-style results in search of a theory”, Ann. Inst. H. Poincaré, 23:2 (1987), 397–423 | MR | Zbl

[7] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, 2, Mir, M., 1984, 752 pp.

[8] Friedland O., Sodin S., “Bounds on the concentration function in terms of the Diophantine approximation”, C. R. Math. Acad. Sci. Paris, 345:9 (2007), 513–518 | DOI | MR | Zbl

[9] Hitczenko P., Montgomery-Smith S. J., Oleszkiewicz K., “Moment inequalities for sums of certain independent symmetric random variables”, Studia Math., 123:1 (1997), 15–42 | MR | Zbl

[10] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.

[11] Kahane J. P., Some Random Series of Functions, Cambridge Univ. Press, Cambridge, 1985, 305 pp. | MR | Zbl

[12] Klartag B., “A Berry–Esseen type inequality for convex bodies with an unconditional basis”, Probab. Theory Related Fields, 45:1 (2009), 1–33 | DOI | MR

[13] Rudelson M., Vershynin R., “The Littlewood–Offord problem and invertibility of random matrices”, Adv. Math., 218:2 (2008), 600–633 | DOI | MR | Zbl

[14] Sudakov V. N., “Tipichnye raspredeleniya lineinykh funktsionalov v konechnomernykh prostranstvakh vysokoi razmernosti”, Dokl. AN SSSR, 243:6 (1978), 1402–1405 | MR | Zbl