@article{TVP_2011_56_3_a3,
author = {G. M. Feldman},
title = {Gaussian measures in the sence of {Bernstein:} factorization, supports, zero-one law},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {494--513},
year = {2011},
volume = {56},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a3/}
}
G. M. Feldman. Gaussian measures in the sence of Bernstein: factorization, supports, zero-one law. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 3, pp. 494-513. http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a3/
[1] Rukhin A. L., “Ob odnoi teoreme S. N. Bernshteina”, Matem. zametki, 6:3 (1969), 301–307 | MR | Zbl
[2] Rukhin A. L., “Nekotorye statisticheskie i veroyatnostnye zadachi na gruppakh”, Tr. MIAN, 111 (1970), 52–109 | MR | Zbl
[3] Heyer H., Rall Ch., “Gauss'she Wahrscheinlichkeitsmasse auf Corwinschen Gruppen”, Math. Z., 128:4 (1972), 343–361 | DOI | MR | Zbl
[4] Feldman G. M., “Gaussovskie raspredeleniya v smysle Bernshteina na gruppakh”, Teoriya veroyatn. i ee primen., 31:1 (1986), 47–58 | MR | Zbl
[5] Baryshnikov Y., Eisenberg B., Stadje W., “Independent variables with independent sum and difference: $S^1$-case”, J. Multivariate Anal., 45:2 (1993), 161–170 | DOI | MR | Zbl
[6] Neuenschwander D., “Gauss measures in the sense of Bernstein on the Heisenberg group”, Probab. Math. Statist., 14:2 (1993), 253–256 | MR | Zbl
[7] Franz U., Neuenschwander D., Schott R., “Gauss laws in the sense of Bernstein and uniqueness of embedding into convolution semigroups on quantum groups and braided groups”, Probab. Theory Related Fields, 109:1 (1997), 101–127 | DOI | MR | Zbl
[8] Neuenschwander D., Schott R., “The Bernstein and Skitovič–Darmois characterization theorems for Gaussian distributions on groups, symmetric spaces, and quantum groups”, Exposition. Math., 15:4 (1997), 289–314 | MR | Zbl
[9] Feldman G. M., “On groups for which the Bernstein characterization of a Gaussian distribution is valid”, Dopovidi Natsionalnoiï akademiï nauk Ukraïni. Matematika. Prirodoznavstvo. Tekhnichni nauki, 2001, no. 8, 29–32 | MR | Zbl
[10] Myronyuk M., “An analogue of the Bernstein theorem for the cylinder”, Aequationes Math., 71:1–2 (2006), 54–69 | DOI | MR | Zbl
[11] Feldman G. M., Functional Equations and Characterization Problems on Locally Compact Abelian Groups, EMS Tracts Math., 5, Eur. Math. Soc., Zürich, 2008, 268 pp. | MR | Zbl
[12] Byczkowski T., “Gaussian measures on metric abelian groups”, Lecture Notes in Math., 706, 1979, 41–53 | DOI | MR | Zbl
[13] Byczkowski T., “Zero-one laws for Gaussian measures on metric abelian groups”, Studia Math., 69:2 (1980/81), 159–189 | MR | Zbl
[14] Byczkowska H., Byczkowski T., “A generalization of the zero-one law for Gaussian measures on metric abelian groups”, Bull. Acad. Polon. Sci., 29:3–4 (1981), 187–191 | MR | Zbl
[15] Khyuitt E., Ross K, Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975, 656 pp.
[16] Parthasarathy K. R., Ranga Rao R., Varadhan S. R. S., “Probability distributions on locally compact Abelian groups”, Illinois J. Math., 7 (1963), 337–369 | MR | Zbl
[17] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977, 416 pp.
[18] Heyer H., Probability Measures on Locally Compact Groups, Ergeb. Math. Grenzgeb., 94, Springer-Verlag, Berlin–Heidelberg–New York, 1977, 531 pp. | MR | Zbl
[19] Ronkin L. I., Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971, 432 pp.
[20] Feldman G. M., “O gaussovskikh raspredeleniyakh na lokalno kompaktnykh abelevykh gruppakh”, Teoriya veroyatn. i ee primen., 23:3 (1978), 548–563 | MR | Zbl