Convergence properties of the maximal partial sums for arrays of rowwise NA random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 3, pp. 613-621 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_3_a10,
     author = {Y. Wu},
     title = {Convergence properties of the maximal partial sums for arrays of rowwise {NA} random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {613--621},
     year = {2011},
     volume = {56},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a10/}
}
TY  - JOUR
AU  - Y. Wu
TI  - Convergence properties of the maximal partial sums for arrays of rowwise NA random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 613
EP  - 621
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a10/
LA  - en
ID  - TVP_2011_56_3_a10
ER  - 
%0 Journal Article
%A Y. Wu
%T Convergence properties of the maximal partial sums for arrays of rowwise NA random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 613-621
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a10/
%G en
%F TVP_2011_56_3_a10
Y. Wu. Convergence properties of the maximal partial sums for arrays of rowwise NA random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 3, pp. 613-621. http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a10/

[1] Alam K., Saxena K. M. L., “Positive dependence in multivariate distributions”, Comm. Statist. Theory Methods, 10:2 (1981), 1183–1196 | DOI | MR

[2] Joag-Dev K., Proschan F., “Negative association of random variables with applications”, Ann. Stat., 11:1 (1983), 286–295 | DOI | MR | Zbl

[3] Matula P., “A note on the almost sure convergence of sums of negatively dependent random variables”, Statist. Probab. Lett., 15:3 (1992), 209–213 | DOI | MR | Zbl

[4] Su C., Zhao L. C., Wang Y. B., “Moment inequalities and weak convergence for negatively associated sequences”, Sci. China Ser., 1997, 172–182 | MR | Zbl

[5] Shao Q. M., “A comparison theorem on moment inequalities between negatively associated and independent random variables”, J. Theoret. Probab., 13:2 (2000), 343–356 | DOI | MR | Zbl

[6] Shao Q. M., Su C., “The law of the iterated logarithm for negatively associated random variables”, Stochastic Process. Appl., 83 (1999), 139–148 | DOI | MR | Zbl

[7] Liang H. Y., Su C., “Complete convergence for weighted sums of NA sequences”, Statist. Probab. Lett., 45:1 (1999), 85–95 | DOI | MR | Zbl

[8] Liang H. Y., “Complete convergence for weighted sums of negatively associated random variables”, Statist. Probab. Lett., 48:4 (2000), 317–325 | DOI | MR | Zbl

[9] Roussas G. G., “Asymptotic normality of random fields of positively or negatively associated processes”, J. Multivariate Anal., 50:1 (1994), 152–173 | DOI | MR | Zbl

[10] Gan S. X., Chen P. Y., “On the limiting behavior of the maximum partial sums for arrays of rowwise NA random variables”, Acta Math. Sci., Ser. B, Engl. ed., 27:2 (2007), 283–290 | MR | Zbl

[11] Chow Y. S., “On the rate of moment convergence of sample sums and extremes”, Bull. Inst. Math. Acad. Sinica, 16:3 (1988), 177–201 | MR | Zbl

[12] Wang D. C., Su C., “Moment complete convergence for B-valued iid random elements”, Acta Math. Appl. Sin., 27:3 (2004), 440–448 (in Chinese) | MR | Zbl

[13] Rosalsky A., Thanh L. V., Volodin A. I., “On complete convergence in mean of normed sums of independent random elements in Banach spaces”, Stoch. Anal. Appl., 24:1 (2006), 23–35 | DOI | MR | Zbl

[14] Wang D. C., Zhao W., “Moment complete convergence for sums of a sequence of NA random variables”, Appl. Math. J. Chinese Univ. Ser. A, 21:4 (2006), 445–450 (in Chinese) | MR | Zbl

[15] Liang H. Y., Li D. L., Rosalsky A., “Complete moment and integral convergence for sums of negatively associated random variables”, Acta Math. Sin., Engl. Ser., 26:3 (2010), 419–432 | DOI | MR | Zbl

[16] Li Y. X., Zhang L. X., “Complete moment convergence of moving-average processes under dependence assumptions”, Statist. Probab. Lett., 70:3 (2004), 191–197 | DOI | MR | Zbl

[17] Jiang Y., Zhang L. X., “Precise rates in the law of iterated logarithm for the moment of iid random variables”, Acta Math. Sin., Engl. Ser., 22:3 (2006), 781–792 | DOI | MR | Zbl