@article{TVP_2011_56_3_a1,
author = {An. A. Novikov and P. A. Novikov},
title = {Locally most powerful sequential tests of simple hypotheses vs. one-sided alternatives for independent observations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {449--477},
year = {2011},
volume = {56},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a1/}
}
TY - JOUR AU - An. A. Novikov AU - P. A. Novikov TI - Locally most powerful sequential tests of simple hypotheses vs. one-sided alternatives for independent observations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2011 SP - 449 EP - 477 VL - 56 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a1/ LA - ru ID - TVP_2011_56_3_a1 ER -
%0 Journal Article %A An. A. Novikov %A P. A. Novikov %T Locally most powerful sequential tests of simple hypotheses vs. one-sided alternatives for independent observations %J Teoriâ veroâtnostej i ee primeneniâ %D 2011 %P 449-477 %V 56 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a1/ %G ru %F TVP_2011_56_3_a1
An. A. Novikov; P. A. Novikov. Locally most powerful sequential tests of simple hypotheses vs. one-sided alternatives for independent observations. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 3, pp. 449-477. http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a1/
[1] Volodin I. N., “Garantiinye protsedury statisticheskogo vyvoda (opredelenie ob'ema vyborki)”, Issledovaniya po prikladnoi matematike, no. 10, Kazan, 1984, 13–53
[2] DeGroot M., Optimalnye statisticheskie resheniya, Mir, M., 1974, 492 pp.
[3] Novikov P. A., “Lokalno maksiminnyi po napravleniyam kriterii dlya mnogomernogo parametra s chastichno uporyadochennymi alternativami”, Izv. vuzov, 2011, no. 1, 39–48
[4] Novikov P. A., “Lokalno naibolee moschnye posledovatelnye kriterii dlya markovskikh protsessov s diskretnym vremenem”, Teoriya veroyatn. i ee primen., 55:2 (2010), 369–372 | MR
[5] Pinsker M. S., Informatsiya i informatsionnaya ustoichivost sluchainykh velichin i protsessov, Izd-vo AN SSSR, M., 1960, 201 pp.
[6] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 470 pp.
[7] Abraham J. K., The local power of sequential tests subject to an expected sample size restriction, Technical report no. 38, Stanford University, Stanford, 1969 | MR
[8] Berk R. H., “Locally most powerful sequential tests”, Ann. Statist., 3 (1975), 373–381 | DOI | MR | Zbl
[9] Ghosh M., Mukhopadhyay N., Sen P. K., Sequential Estimation, Wiley, New York, 1997, 480 pp. | MR | Zbl
[10] Ferguson T. S., Mathematical Statistics: A Decision Theoretic Approach, Academic Press, New York, 1967, 396 pp. | MR | Zbl
[11] Irle A., Sequentialanalyse. Optimale sequentielle Tests, Teubner, Stuttgart, 1990, 176 pp. | MR | Zbl
[12] Liu Y., Blostein S. D., “Optimality of the sequential probability ratio test for nonstationary observations”, IEEE Trans. Inform. Theory, 38 (1992), 177–182 | DOI | MR | Zbl
[13] Müller-Funk U., Mathematical Programming and Optimal Stopping in Sequential Testing Theory, Habilitationsschrift, Universität Freiburg, 1986
[14] Müller-Funk U., Pukelsheim F., Witting H., “Locally most powerful tests for two-sided hypotheses”, Probability and Statistical Decision Theory, vol. A (Bad Tatzmannsdorf, 1983), Reidel, Dordrecht, 1985, 31–56 | MR
[15] Novikov A., “Locally most powerful two-stage tests”, Prague Stochastics 2006, Proceedings of the joint session of 7th Prague Symposium on Asymptotic Statistics and 15th Prague Conference on Information Theory, Statistic Decision Functions and Random Processes (Prague 2006), Matfyzpress, Charles University in Prague, Prague, 2006, 554–567
[16] Novikov A., “Optimal sequential tests for two simple hypotheses based on independent observations”, Int. J. Pure Appl. Math., 45:2 (2008), 291–314 | MR | Zbl
[17] Novikov A., “Optimal sequential procedures with Bayes decision rules”, Kybernetika, 46:4 (2010), 754–770 | MR | Zbl
[18] Novikov A., “Optimal sequential procedures with Bayes decision rules”, Int. Math. Forum, 5:43 (2010), 2137–2147 | MR | Zbl
[19] Novikov A., “Optimal sequential multiple hypothesis tests”, Kybernetika, 45:2 (2009), 309–330 | MR | Zbl
[20] Novikov A., “Optimal sequential tests for two simple hypotheses”, Sequential Anal., 28:2 (2009), 188–217 | DOI | MR | Zbl
[21] Novikov A., Novikov P., “Locally most powerful sequential tests of a simple hypothesis vs.one-sided alternatives”, J. Statist. Plann. Inference, 140:3 (2010), 750–765 | DOI | MR | Zbl
[22] Roters M., “Locally most powerful sequential tests for processes of the exponential class with stationary and independent increments”, Metrika, 39:3–4 (1992), 177–183 | DOI | MR | Zbl
[23] Schmitz N., Optimal Sequentially Planned Decision Procedures, Lecture Notes in Statist., 79, Springer-Verlag, New York, 1993, 207 pp. | DOI | MR | Zbl
[24] Stein C., “A note on cumulative sums”, Ann. Math. Statist., 17 (1946), 498–499 | DOI | MR | Zbl
[25] Wald A., Statistical Decision Functions, Wiley, New York, 1950, 179 pp. | MR | Zbl