On the duality principle of hedging in diffusion models
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 3, pp. 417-448 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_3_a0,
     author = {R. V. Ivanov and A. N. Shiryaev},
     title = {On the duality principle of hedging in diffusion models},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {417--448},
     year = {2011},
     volume = {56},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a0/}
}
TY  - JOUR
AU  - R. V. Ivanov
AU  - A. N. Shiryaev
TI  - On the duality principle of hedging in diffusion models
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 417
EP  - 448
VL  - 56
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a0/
LA  - ru
ID  - TVP_2011_56_3_a0
ER  - 
%0 Journal Article
%A R. V. Ivanov
%A A. N. Shiryaev
%T On the duality principle of hedging in diffusion models
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 417-448
%V 56
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a0/
%G ru
%F TVP_2011_56_3_a0
R. V. Ivanov; A. N. Shiryaev. On the duality principle of hedging in diffusion models. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 3, pp. 417-448. http://geodesic.mathdoc.fr/item/TVP_2011_56_3_a0/

[1] Alfonsi A., Jourdain B., “General duality for perpetual American options”, Int. J. Theor. Appl. Fin., 11:6 (2008), 545–566 | DOI | MR | Zbl

[2] Alfonsi A., Jourdain B., “Exact volatility calibration based on a Dupire-type call-put duality for perpetual American options”, Nonlinear Differ. Eq. Appl., 16:4 (2009), 523–554 | DOI | MR | Zbl

[3] Andreasen J., “The pricing of discretely sampled Asian and lookback options: a change of numeraire approach”, J. Comput. Finance, 2:1 (1998), 5–30 | MR

[4] Bates D. S., “The skewness premium: option pricing under asymmetric processes”, Advances in Futures and Options Research, 9, eds. P. P. Boyle, P. Ritchken, and G. Pennacchi, JAI Press, Stamford, 1997, 51–82 | MR

[5] Black F., Scholes M., “The pricing of options and corporate liabilities”, J. Polit. Econ., 81 (1973), 637–654 | DOI | Zbl

[6] Carr P., European put call symmetry, Preprint, Cornell University, 1994

[7] Carr P., Chesney M., American put call symmetry, Preprint, H.E.C., 1996; http://www.math.nyu.edu/research/carrp/research.html

[8] Carr P., Ellis K., Gupta V., “Static hedging of exotic options”, J. Finance, 53:3 (1998), 1165–1190 | DOI | MR

[9] Chesney M., Gibson R., “State space symmetry and two factor option pricing models”, Advances in Futures and Options Research, 8, eds. P. P. Boyle, F. A. Longstaff, and P. Ritchken, JAI Press, Stamford, 1995, 85–112

[10] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl

[11] Detemple J., “American options: symmetry properties”, Option Pricing, Interest Rates and Risk Management, eds. J. Cvitanić, E. Jouini, and M. Musiela, Cambridge Univ. Press, Cambridge, 2001, 67–104 | MR | Zbl

[12] Dupire B., “Pricing with a smile”, Risk, 7:1 (1994), 18–20

[13] Eberlein E., Kluge W., Papapantoleon A., “Symmetries in Lévy term structure models”, Int. J. Theor. Appl. Finance, 9:6 (2006), 967–986 | DOI | MR | Zbl

[14] Eberlein E., Papapantoleon A., “Equivalence of floating and fixed strike Asian and lookback options”, Stochastic Process. Appl., 115:1 (2005), 31–40 | DOI | MR | Zbl

[15] Eberlein E., Papapantoleon A., “Symmetries and pricing of exotic options in Lévy models”, Exotic Option Pricing and Advanced Lévy Models, eds. A. Kyprianou, W. Schoutens, and P. Wilmott, Wiley, Chichester, 2005, 99–128 | MR

[16] Eberlein E., Papapantoleon A., Shiryaev A. N., “On the duality principle in option pricing: semimartingale setting”, Finance Stoch., 12:2 (2006), 265–292 | DOI | MR

[17] Eberlein E., Papapantoleon A., Shiryaev A. N., “Esscher transform and the duality principle for multidimensional semimartingales”, Finance Stoch., 12:2 (2008), 265–292 | DOI | MR | Zbl

[18] El Karoui N., Quenez M. C., “Dynamic programming and pricing of contingent claims in an incomplete market”, SIAM J. Control Optim., 33:1 (1995), 29–66 | DOI | MR | Zbl

[19] Fajardo J., Mordecki E., “Skewness premium with Lévy processes”, IBMEC RJ Economics Duscussion Paper, no. 2006-04, IBMEC Business School, Rio de Janeiro, 2006; arXiv: 0810.4485v1

[20] Fajardo J., Mordecki E., “Symmetry and duality in Lévy markets”, Quant. Finance, 6:3 (2006), 219–227 | DOI | MR | Zbl

[21] Geman H., Eydeland A., “Domino effect.”, Risk, 8:4 (1995), 65–67

[22] Geman H., El Karoui N., Rochet J.-C., “Changes of numéraire, changes of probability measures and option pricing”, J. Appl. Probab., 32:2 (1995), 443–458 | DOI | MR | Zbl

[23] Geman H., Yor M., “Quelques relations entre processus de Bessel, options asiatiques et fonctions confluentes hypergéométriques”, C.R. Acad. Sci. Paris, 1314:6 (1992), 471–474 | MR

[24] Geman H., Yor M., “Bessel processes, Asian options, and perpetuities”, Math. Finance, 3:4 (1993), 349–375 | DOI | Zbl

[25] Grabbe J. O., “The pricing of call and put options on foreign exchange”, J. Int. Money Finance, 2 (1983), 239–253 | DOI

[26] Jacod J., Shiryaev A. N., Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 2003, 661 pp. | MR

[27] Henderson V., Wojakowski R., “On the equivalence of floating- and fixed-strike Asian options”, J. Appl. Probab., 39:2 (2002), 391–394 | DOI | MR | Zbl

[28] Heynen R. C., Kat H. M., “Pricing and hedging power options”, Financ. Engin. Japan. Markets, 3 (1996), 253–261 | DOI

[29] Hoffman I. D., Lognormal processes in finance, Doctoral dissertation, University of New South Wales, Sydney, 1993 | MR

[30] Kallsen J., “Optimal portfolios for exponential Lévy processes”, Math. Methods Oper. Res., 51:3 (2000), 357–374 | DOI | MR

[31] Kallsen J., Shiryaev A. N., “The cumulant process and Esscher's change of measure”, Finance Stoch., 6:4 (2002), 397–428 | DOI | MR | Zbl

[32] Kramkov D. O., “Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets”, Probab. Theory Related Fields, 105:4 (1996), 459–479 | DOI | MR | Zbl

[33] Kyprianou A. E., Introductory Lectures on Fluctuations of L\'{evy} Processes with Applications, Springer-Verlag, Berlin, 2006, 373 pp. | MR

[34] Lipton A., Mathematical Methods for Foreign Exchange a Financial Engineer's Approach, World Sci. Publ., River Edge, 2001, 676 pp. | MR

[35] Peskir G., Shiryaev A. N., “A note on the call-put parity and a call-put duality”, Teoriya veroyatn. i ee primen., 46:1 (2001), 181–183 | MR | Zbl

[36] Peskir G., Shiryaev A., Optimal Stopping and Free-Boundary Problems, Birkhäuser, Basel, 2006, 500 pp. | MR | Zbl

[37] Shepp L. A., Shiryaev A. N., “The Russian option: reduced regret”, Ann. Appl. Probab., 3:3 (1993), 631–640 | DOI | MR | Zbl

[38] Shepp L. A., Shiryaev A. N., “Novyi vzglyad na raschety «Russkogo optsiona»”, Teoriya veroyatn. i ee primen., 39:1 (1994), 130–149 | MR

[39] Shiryaev A. N., Veroyatnost-1, MTsNMO, M., 2004, 519 pp.

[40] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, 2, FAZIS, M., 1017 pp.

[41] Schroder M., “Changes of numeraire for pricing futures, forwards and options”, Rev. Financ. Stud., 12 (1999), 1143–1163 | DOI

[42] Skiadopoulos G., “Volatility smile consistent option models: a survey”, Int. J. Theor. Appl. Finance, 4 (2001), 403–437 | DOI | MR | Zbl

[43] Vanmaele M., Deelstra G., Liinev J., Dhaene J., Goovaerts M. J., “Bounds for the price of discrete arithmetic Asian options”, J. Comput. Appl. Math., 185:1 (2006), 51–90 | DOI | MR | Zbl

[44] Večeř J., “Unified Asian pricing”, Risk, 15:6 (2002), 113–116 | Zbl

[45] Večeř J., Xu M., “Pricing Asian options in a semimartingale model”, Quant. Finance, 4:2 (2004), 170–175 | MR