Absolute continuity conditions for multivariate infinitely divisible distributions and their applications
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 2, pp. 351-366 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_2_a6,
     author = {M. Yamazato},
     title = {Absolute continuity conditions for multivariate infinitely divisible distributions and their applications},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {351--366},
     year = {2011},
     volume = {56},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_2_a6/}
}
TY  - JOUR
AU  - M. Yamazato
TI  - Absolute continuity conditions for multivariate infinitely divisible distributions and their applications
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 351
EP  - 366
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_2_a6/
LA  - en
ID  - TVP_2011_56_2_a6
ER  - 
%0 Journal Article
%A M. Yamazato
%T Absolute continuity conditions for multivariate infinitely divisible distributions and their applications
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 351-366
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_2_a6/
%G en
%F TVP_2011_56_2_a6
M. Yamazato. Absolute continuity conditions for multivariate infinitely divisible distributions and their applications. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 2, pp. 351-366. http://geodesic.mathdoc.fr/item/TVP_2011_56_2_a6/

[1] Bodnarchuk S. V., Kulyk O. M., “Conditions for the existence and smoothness of the distribution density of the Ornstein–Uhlenbeck process with Lévy noise”, Theory Probab. Math. Statist., 79 (2008/2009), 23–38 | Zbl

[2] Hudson W. N., Mason J. D., “Operator-stable laws”, J. Multivariate Anal., 11:3 (1981), 434–447 | DOI | MR | Zbl

[3] Sato K., “Absolute continuity of multivariate distribuions of class $L$”, J. Multivariate Anal., 12:1 (1982), 89–94 | DOI | MR | Zbl

[4] Sato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR

[5] Sato K., Yamazato M., “Operator-self-decomposable distributions as limit distributions of processes of Ornstein–Uhlenbeck type”, Stochastic Process. Appl., 17 (1984), 73–100 | DOI | MR | Zbl

[6] Simon T., “On the absolute continuity of multidimensional Ornstein–Uhlenbeck processes”, Probab. Theory Related Fields (to appear)

[7] Tucker H. G., “Absolute continuity of infinitely divisible distributions”, Pacific J. Math., 12 (1962), 1125–1129 | MR | Zbl

[8] Yamazato M., “Absolute continuity of operator-self-decomposable distributions on $\mathbb R^d$”, J. Multivariate Anal., 13:4 (1983), 550–560 | DOI | MR | Zbl

[9] Yamazato M., “A simple proof of absolute continuity of multivariate operator-self-decomposable distributions”, Bull. Nagoya Inst. Tech., 1992, no. 44, 117–120 | MR | Zbl

[10] Yamazato M., “Absolute continuity of transition probabilities of multidimensional processes with stationary independent increments”, Teoriya veroyatn. i ee primen., 39:2 (1994), 347–354 | MR | Zbl