On estimation of closeness of binomial and normal distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 2, pp. 248-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_2_a2,
     author = {S. V. Nagaev and V. I. Chebotarev},
     title = {On estimation of closeness of binomial and normal distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {248--278},
     year = {2011},
     volume = {56},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_2_a2/}
}
TY  - JOUR
AU  - S. V. Nagaev
AU  - V. I. Chebotarev
TI  - On estimation of closeness of binomial and normal distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 248
EP  - 278
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_2_a2/
LA  - ru
ID  - TVP_2011_56_2_a2
ER  - 
%0 Journal Article
%A S. V. Nagaev
%A V. I. Chebotarev
%T On estimation of closeness of binomial and normal distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 248-278
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_2_a2/
%G ru
%F TVP_2011_56_2_a2
S. V. Nagaev; V. I. Chebotarev. On estimation of closeness of binomial and normal distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 2, pp. 248-278. http://geodesic.mathdoc.fr/item/TVP_2011_56_2_a2/

[1] Berry A. C., “The accuracy of the Gaussian approximation to the sum of independent variates”, Trans. Amer. Math. Soc., 49 (1941), 122–136 | DOI | MR

[2] Esseen C.-G., “On the Liapounoff limit of error in the theory of probability”, Ark. Mat. Astron. Fys., 28A:9 (1942), 1–19 | MR | Zbl

[3] Bergström H., “On the central limit theorem in the case of not equally distributed random variables”, Skand. Aktuarietidskr., 3 (1949), 37–62 | MR

[4] Takano K., “A remark to a result of A. C. Berry”, Res. Mem. Inst. Statist. Math., 6:9 (1951), 408–415

[5] Zolotarev V. M., “Absolyutnaya otsenka ostatochnogo chlena v tsentralnoi predelnoi teoreme”, Teopiya vepoyatn. i ee ppimen., 11:1 (1966), 108–119 | MR | Zbl

[6] Zahl S., “Bounds for the central limit theorem error”, SIAM J. Appl. Math., 14:6 (1966), 1225–1245 | DOI | MR | Zbl

[7] Zolotarev V. M., “Nekotorye neravenstva teorii veroyatnostei i ikh primenenie k utochneniyu teoremy A. M. Lyapunova”, Dokl. AN SSSR, 177:3 (1967), 501–504 | MR | Zbl

[8] Zolotarev V. M., “A sharpening of the inequality of Berry–Esseen”, Z. Wahrscheinlichkeitstheor. verw. Geb., 8 (1967), 332–342 | DOI | MR | Zbl

[9] van Beek P., “An application of Fourier methods to the problem of sharpening the Berry–Esseen inequality”, Z. Wahrscheinlichkeitstheor. verw. Geb., 23 (1972), 187–196 | DOI | MR | Zbl

[10] Shiganov I. S., “Ob utochnenii verkhnei otsenki konstanty v ostatochnom chlene tsentralnoi predelnoi teoremy”, Problemy ustoichivosti stokhasticheskikh modelei, VNIISI, M., 1982, 109–115

[11] Shevtsova I. G., “Utochnenie verkhnei otsenki absolyutnoi postoyannoi v neravenstve Berri–Esseena”, Teoriya veroyatn. i ee primen., 51:3 (2006), 622–626

[12] Prawitz H., “On the remainder in the central limit theorem. Part I. One-dimensional independent variables with finite absolute moments of third order”, Scand. Actuar. J., 3 (1975), 145–156 | MR

[13] Chistyakov G. P., “Novoe asimptoticheskoe razlozhenie i asimptoticheski nailuchshie postoyannye v teoreme Lyapunova. I–III”, Teoriya veroyatn. i ee primen., 46:2 (2001), 326–344 ; 46:3 (2001), 573–579 ; 47:3 (2002), 475–497 | Zbl | MR | Zbl

[14] Nagaev S. V., Chebotarev V. I., Ob otsenke blizosti binomialnogo raspredeleniya k normalnomu, Preprint 2009/142, Vychislitelnyi tsentr DVO RAN, Khabarovsk, 2009

[15] Korolev V. Yu., Shevtsova I. G., “O verkhnei otsenke absolyutnoi postoyannoi v neravenstve Berri–Esseena”, Teopiya vepoyatn. i ee ppimen., 54:4 (2009), 671–695

[16] Esseen C.-G., “A moment inequality with an application to the central limit theorem”, Skand. Aktuarietidskr., 39 (1956), 160–170 | MR

[17] Esseen C.-G., “Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law”, Acta Math., 77 (1945), 1–125 | DOI | MR | Zbl

[18] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, M.–L., 1949, 264 pp.

[19] Hipp C., Mattner L., “On the normal approximation to symmetric binomial distributions”, Teoriya veroyatn. i ee primen., 52:3 (2007), 610–617 | MR

[20] Shevtsova I. G., “O neravenstve sglazhivaniya”, Dokl. RAN, 430:5 (2010), 600–602 | Zbl

[21] Uspensky J. V., Introduction to Mathematical Probability, McGraw Hill, New York, 1937, 411 pp. | Zbl

[22] Shevtsova I. G., “Nizhnyaya asimptoticheski pravilnaya postoyannaya v tsentralnoi predelnoi teoreme”, Dokl. RAN, 430:4 (2010), 466–469 | Zbl

[23] Bentkus V., On the asymptotical behavior of the constant in the Berry–Esseen inequality, Preprint 91-078, Universität Bielefeld, 1991 | MR

[24] Bentkus V., “On the asymptotical behavior of the constant in the Berry–Esseen inequality”, J. Theoret. Probab., 7:2 (1994), 211–224 | DOI | MR | Zbl

[25] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981, 798 pp.