@article{TVP_2011_56_2_a13,
author = {Z. Zhang},
title = {Bounds for characteristic functions and {Laplace} transforms of probability distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {407--414},
year = {2011},
volume = {56},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_2_a13/}
}
Z. Zhang. Bounds for characteristic functions and Laplace transforms of probability distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 2, pp. 407-414. http://geodesic.mathdoc.fr/item/TVP_2011_56_2_a13/
[1] Benedicks M., “An estimate of the modulus of the characteristic function of a lattice distribution with application to remainder term estimates in local limit theorems”, Ann. Prob., 3 (1975), 162–165 | DOI | MR | Zbl
[2] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp.
[3] Gnedenko B. V., “O lokalnoi predelnoi teoreme teorii veroyatnostei”, Uspekhi matem. nauk, 3:3 (1948), 187–194 | MR
[4] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, M.–L., 1949, 264 pp.
[5] Gamkrelidze N. G., “O «sglazhivanii» veroyatnostei pri slozhenii nezavisimykh tselochislennykh velichin”, Teoriya veroyatn. i ee primen., 26:4 (1981), 835–841 | MR | Zbl
[6] Johnstone I. M., MacGibbon B., “Une mesure d'information caractérisant la loi de Poisson”, Lecture Notes in Math., 1247, 1987, 563-573 | MR | Zbl
[7] Lukach E., Kharakteristicheskie funktsii, Nauka, M., 1979, 424 pp.
[8] Luo S., Wang Z., Zhang Q., “An inequality for characteristic functions and its applications to uncertainty relations and the quantum Zeno effect”, J. Phys. A: Math. Gen., 35 (2002), 5935–5941 | DOI | MR | Zbl
[9] Luo S., Zhang Z., “Estimating the first zero of a characteristic function”, C. R. Math. Acad. Sci. Paris, 338:3 (2004), 203–206 | MR | Zbl
[10] Luo S., Zhang Z., “On decaying rate of quantum states”, Lett. Math. Phys., 71:1 (2005), 1–11 | DOI | MR | Zbl
[11] Luo S., Zhang Z., “An extremal problem for Fourier transforms of probabilities”, C. R. Math. Acad. Sci. Paris, 341:5 (2005), 293–296 | MR | Zbl
[12] von Bahr B., Esseen C.-G., “Inequalities for the $r$th absolute moment of a sum of random variables, $1\le r\le 2$”, Ann. Math. Statist., 36 (1965), 299–303 | DOI | MR | Zbl