Branching random walk in $\mathbf Z^4$ with branching at the origin only
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 2, pp. 224-247 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_2_a1,
     author = {V. A. Vatutin and V. A. Topchii and Yu. Hu},
     title = {Branching random walk in $\mathbf Z^4$ with branching at the origin only},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {224--247},
     year = {2011},
     volume = {56},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_2_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - V. A. Topchii
AU  - Yu. Hu
TI  - Branching random walk in $\mathbf Z^4$ with branching at the origin only
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 224
EP  - 247
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_2_a1/
LA  - ru
ID  - TVP_2011_56_2_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A V. A. Topchii
%A Yu. Hu
%T Branching random walk in $\mathbf Z^4$ with branching at the origin only
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 224-247
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_2_a1/
%G ru
%F TVP_2011_56_2_a1
V. A. Vatutin; V. A. Topchii; Yu. Hu. Branching random walk in $\mathbf Z^4$ with branching at the origin only. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 2, pp. 224-247. http://geodesic.mathdoc.fr/item/TVP_2011_56_2_a1/

[1] Albeverio S., Bogachev L. V., “Branching random walk in a catalytic medium. I. Basic equations”, Positivity, 4:1 (2000), 41–100 | DOI | MR | Zbl

[2] Albeverio S., Bogachev L. V., Yarovaya E. B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Acad. Sci. Paris, 326:8 (1998), 975–980 | MR | Zbl

[3] Bogachev L. V., Yarovaya E. B., “Predelnaya teorema dlya nadkriticheskogo vetvyaschegosya sluchainogo bluzhdaniya na $\mathbb Z^d$ s odnim istochnikom”, Uspekhi matem. nauk, 53:5 (1998), 231–232 | MR

[4] Bogachev L. V., Yarovaya E. B., “O momentakh vetvyaschegosya sluchainogo bluzhdaniya v sluchainoi srede”, Uspekhi matem. nauk, 55:5 (2000), 173–174 | MR | Zbl

[5] Faà di Bruno F., “Note sur une nouvelle formule de calcul différentiel”, Quart. J. Pure Appl. Math., 1 (1858), 359–360

[6] Dawson D. A. and Fleischmann K., “Longtime behavior of a branching process controlled by branching catalysts”, Stochastic Process. Appl., 71 (1997), 241–257 | DOI | MR | Zbl

[7] Delmas J.-F., “Super-mouvement brownien avec catalyse”, Stochastics Stochastics Rep., 58:3–4 (1996), 303–347 | MR | Zbl

[8] Erickson K. B., “Strong renewal theorem with infinite mean”, Trans Amer. Math. Soc., 151:1 (1970), 263–291 | DOI | MR | Zbl

[9] Fleischmann K., “Superprocesses in catalytic media”, Measure-Valued Processes, Stochastic Partial Differential Equations, and Interacting Systems (Montreal, PQ, 1992), CRM Proc. Lecture Notes, 5, Amer. Math. Soc., Providence, 1994, 99–110 | MR | Zbl

[10] Fleischmann K., Le Gall J. F., “A new approach to the single point catalytic super-Brownian motion”, Probab. Theory Related Fields, 102:1 (1995), 63–82 | DOI | MR | Zbl

[11] Vatutin V. A., Xiong J., “Some limit theorems for a particle system of single point catalytic branching random walks”, Acta Math. Sin. (Engl. Ser.), 23:6 (2007), 997–1012 | DOI | MR | Zbl

[12] Vatutin V. A., Topchii V. A., Yarovaya E. B., “Catalytic branching random walk and queueing systems with random number of independent servers”, Theory Probab. Math. Statist., 16 (2004), 1–15 | MR

[13] Topchii V. A., Vatutin V. A., “Individuals at the origin in the critical catalytic branching random walk”, Discrete Random Walks (Paris, 2003), MIMD, Paris, 2003, 325–332 | MR | Zbl

[14] Topchii V. A., Vatutin V. A., “Two-dimensional limit theorem for a critical catalytic branching random walk”, Mathematics and Computer Science III. Algorithms, Trees, Combinatorics and Probabilities, eds. M. Drmota et al., Birkhauser, Basel, 2004, 387–395 | MR | Zbl

[15] Vatutin V. A., Topchii V. A., “Predelnaya teorema dlya kriticheskikh kataliticheskikh vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 49:3 (2004), 461–484 | Zbl

[16] Vatutin V. A., Topchii V. A., “Kataliticheskoe vetvyascheesya sluchainoe bluzhdanie na $\mathbb Z^d$ s vetvleniem tolko v nachale koordinat”, Matem tr., 14:2 (2011) (to appear)