Ergodicity of multi-channel queueing system with balking
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 145-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_1_a7,
     author = {T. N. Belorusov},
     title = {Ergodicity of multi-channel queueing system with balking},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {145--152},
     year = {2011},
     volume = {56},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a7/}
}
TY  - JOUR
AU  - T. N. Belorusov
TI  - Ergodicity of multi-channel queueing system with balking
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 145
EP  - 152
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a7/
LA  - ru
ID  - TVP_2011_56_1_a7
ER  - 
%0 Journal Article
%A T. N. Belorusov
%T Ergodicity of multi-channel queueing system with balking
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 145-152
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a7/
%G ru
%F TVP_2011_56_1_a7
T. N. Belorusov. Ergodicity of multi-channel queueing system with balking. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 145-152. http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a7/

[1] Cohen J. W., “Single server queue with uniformely bounded virtual waiting time”, J. Appl. Probab., 5:1 (1968), 93–122 | DOI | MR | Zbl

[2] Yurkevich O. M., “K issledovaniyu mnogolineinykh sistem massovogo obsluzhivaniya s ogranichennym vremenem ozhidaniya”, Izv. AN SSSR tekhn. kibernetika, 1970, no. 5, 50–58

[3] Morozov E. V., “Issledovanie nekotorykh sistem obsluzhivaniya s ogranichennym ozhidaniem”, Avtomatizir. sistemy plan. raschetov v respubl. plan. organakh, 9 (1977), 48–57 | Zbl

[4] Shvab N. D., “Virtualnoe vremya ozhidaniya dlya sistem s $\tau$-prebyvaniem”, Matematicheskie modeli slozhnykh sistem, 1973, 206–211

[5] Natvig B., “On the transient state probabilities for a queueing model where potential customers are discouraged by queue length”, J. Appl. Probab., 11 (1974), 345–354 | DOI | MR | Zbl

[6] Doorn V., “The transient state probabilities for a queueing model where potential customers are discouraged by queue lenght”, J. Appl. Probab., 18 (1981), 499–506 | DOI | MR | Zbl

[7] Asmussen S., “Ladder heights and the Markov-modulated $M|G|1$ queue”, Stochastic Process. Appl., 37 (1991), 313–326 | DOI | MR | Zbl

[8] Grandell J., Doubly Stochastic Poisson Processes, Springer-Verlag, Berlin, 1976, 234 pp. | MR | Zbl

[9] Smith W. L., “Regenerative stochastic processes”, Proc. Roy. Soc., A 232 (1955), 6–31 | MR | Zbl

[10] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986, 432 pp.

[11] Afanas'eva L. G., “Stochastic boundedness of cyclic queueing systems”, IMS, 59:4 (1992), 869–875 | MR

[12] Afanaseva L. G., Bulinskaya E. V., Sluchainye protsessy v teorii massovogo obsluzhivaniya i upravleniya zapasami, izd-vo MGU, M., 1980, 110 pp.