@article{TVP_2011_56_1_a5,
author = {M. S. Ginovyan and A. A. Sahakyan},
title = {Trace approximations of products of truncated {Toeplitz} operators},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {123--139},
year = {2011},
volume = {56},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a5/}
}
M. S. Ginovyan; A. A. Sahakyan. Trace approximations of products of truncated Toeplitz operators. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 123-139. http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a5/
[1] Akhiezer N. I., Lektsii po teorii approksimatsii, Gostekhizdat, M.–L., 1947, 323 pp.
[2] Anh V. V., Angulo J. M., Ruiz-Medina M. D., “Possible long-range dependence in fractional random fields”, J. Statist. Plann. Inference, 80:1–2 (1999), 95–110 | DOI | MR | Zbl
[3] Anh V. V., Leonenko N. N., McVinish R., “Models for fractional Riesz–Bessel motion and related processes”, Fractals, 9:3 (2001), 329–346 | DOI
[4] Avram F., “On bilinear forms in Gaussian random variables and Toeplitz matrices”, Probab. Theory Related Fields, 79:1 (1988), 37–45 | DOI | MR | Zbl
[5] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1989, 494 pp. | MR | Zbl
[6] Butzer P. L., Nessel R. J., Fourier Analysis and Approximation, v. I, Academic Press, New York–London, 1971, 553 pp. | MR
[7] Dahlhaus R., “Efficient parameter estimation for self-similar processes”, Ann. Statist., 17:4 (1989), 1749–1766 | DOI | MR | Zbl
[8] Dvait G. B., Tablitsy integralov i drugie matematicheskie formuly, Nauka, M., 1977, 224 pp.
[9] Flandrin P., “On the spectrum of fractional Brownian motions”, IEEE Trans. Inform. Theory, 35:1 (1989), 197–199 | DOI | MR
[10] Fox R., Taqqu M. S., “Central limit theorem for quadratic forms in random variables having long-range dependence”, Probab. Theory Related Fields, 74:2 (1987), 213–240 | DOI | MR | Zbl
[11] Gao J., Anh V., Heyde C., Tieng Q., “Parameter estimation of stochastic processes with long-range dependence and intermittency”, J. Time Series Anal., 22:5 (2001), 517–535 | DOI | MR | Zbl
[12] Ginovyan M. S., “Asimptoticheski effektivnoe neparametricheskoe otsenivanie funktsionalov ot spektralnoi plotnosti, imeyuschei nuli”, Teoriya veroyatn. i ee primen., 33:2 (1988), 315–322 | MR | Zbl
[13] Ginovyan M. S., “Ob otsenke znachenii lineinogo funktsionala ot spektralnoi plotnosti gaussovskogo statsionarnogo protsessa”, Teoriya veroyatn. i ee primen., 33:4 (1988), 777–781 | MR | Zbl
[14] Ginovyan M. S., “Zamechanie o tsentralnoi predelnoi teoreme dlya kvadratichnykh form tëplitseva tipa ot statsionarnykh gaussovskikh velichin”, Izv. NAN Armenii, 28:2 (1993), 78–81 | MR | Zbl
[15] Ginovian M. S., “On Toeplitz type quadratic functionals in Gaussian stationary process”, Probab. Theory Related Fields, 100:3 (1994), 395–406 | DOI | MR | Zbl
[16] Ginovyan M. S., Saakyan A. A., “O tsentralnoi predelnoi teoreme dlya tëplitsevykh kvadratichnykh form ot statsionarnykh posledovatelnostei”, Teoriya veroyatn. i ee primen., 49:4 (2004), 653–671
[17] Ginovyan M. S., Sahakyan A. A., “Limit theorems for Toeplitz quadratic functionals of continuous-time stationary process”, Probab. Theory Related Fields, 138:3–4 (2007), 551–579 | DOI | MR | Zbl
[18] Ginovyan M. S., Sahakyan A. A., “A note on the approximation of the traces of the product of truncated Toeplitz matrices”, J. Contemp. Math. Anal., 138 (2009), 262–269 | DOI | MR
[19] Giraitis L., Surgailis D., “A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle's estimate”, Probab. Theory Related Fields, 86:1 (1990), 87–104 | DOI | MR | Zbl
[20] Gokhberg I. Z., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp.
[21] Grenander U., Segë G., Tëplitsevy formy i ikh prilozheniya, IL, M., 1961, 308 pp.
[22] Hasminskii R. Z., Ibragimov I. A., “Asymptotically efficient nonparametric estimation of functionals of a spectral density function”, Probab. Theory Related Fields, 73:3 (1986), 447–461 | DOI | MR | Zbl
[23] Ibragimov I. A., “Ob otsenke spektralnoi funktsii statsionarnogo gaussovskogo protsessa”, Teoriya veroyatn. i ee primen., 8:4 (1963), 391–430 | MR | Zbl
[24] Inoue A., Kasahara Y., “On the asymptotic behavior of the prediction error of a stationary process”, Trends in Probability and Related Analysis, eds. N. Kono and N. R. Shieh, World Scientific, River Edge, 1999, 207–218 | MR | Zbl
[25] Lieberman O., Phillips P. C. B., “Error bounds and asymptotic expansions for Toeplitz product functionals of unbounded spectra”, J. Time Series Anal., 25:5 (2004), 733–753 | DOI | MR | Zbl
[26] Rosenblatt M., “Asymptotic behavior of eigenvalues of Toeplitz forms”, J. Math. Mech., 11 (1962), 941–949 | MR | Zbl
[27] Solo V., “Intrinsic random functions and the paradox of $1/f$ noise”, SIAM J. Appl. Math., 52:1 (1992), 270–291 | DOI | MR | Zbl
[28] Taniguchi M., “On the second order asymptotic efficiency of estimators of Gaussian ARMA processes”, Ann. Statist., 11:1 (1983), 157–169 | DOI | MR | Zbl