Trace approximations of products of truncated Toeplitz operators
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 123-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper establishes error orders for integral limit approximations to the traces of products of truncated Toeplitz operators generated by integrable real symmetric functions defined on the real line. These approximations and the corresponding error bounds are of importance in the statistical analysis of continuous-time stationary processes (asymptotic distributions and large deviations of Toeplitz type quadratic functionals, estimation of the spectral parameters and functionals, etc.) An explicit second-order asymptotic expansion is found for the trace of a product of two truncated Toeplitz operators generated by the spectral densities of continuous-time stationary fractional Riesz-Bessel motions. The order of magnitude of the second term in this expansion is shown to depend on the long-memory parameters of the processes. Also, it is shown that the pole in the first-order approximation is removed by the second-order term, which provides a substantially improved approximation to the original functional.
Keywords: trace approximation, truncated Toeplitz operator, continuous-time stationary process, long-memory, spectral density, singularity, fractional Riesz-Bessel motion.
@article{TVP_2011_56_1_a5,
     author = {M. S. Ginovyan and A. A. Sahakyan},
     title = {Trace approximations of products of truncated {Toeplitz} operators},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {123--139},
     year = {2011},
     volume = {56},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a5/}
}
TY  - JOUR
AU  - M. S. Ginovyan
AU  - A. A. Sahakyan
TI  - Trace approximations of products of truncated Toeplitz operators
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 123
EP  - 139
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a5/
LA  - en
ID  - TVP_2011_56_1_a5
ER  - 
%0 Journal Article
%A M. S. Ginovyan
%A A. A. Sahakyan
%T Trace approximations of products of truncated Toeplitz operators
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 123-139
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a5/
%G en
%F TVP_2011_56_1_a5
M. S. Ginovyan; A. A. Sahakyan. Trace approximations of products of truncated Toeplitz operators. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 123-139. http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a5/

[1] Akhiezer N. I., Lektsii po teorii approksimatsii, Gostekhizdat, M.–L., 1947, 323 pp.

[2] Anh V. V., Angulo J. M., Ruiz-Medina M. D., “Possible long-range dependence in fractional random fields”, J. Statist. Plann. Inference, 80:1–2 (1999), 95–110 | DOI | MR | Zbl

[3] Anh V. V., Leonenko N. N., McVinish R., “Models for fractional Riesz–Bessel motion and related processes”, Fractals, 9:3 (2001), 329–346 | DOI

[4] Avram F., “On bilinear forms in Gaussian random variables and Toeplitz matrices”, Probab. Theory Related Fields, 79:1 (1988), 37–45 | DOI | MR | Zbl

[5] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1989, 494 pp. | MR | Zbl

[6] Butzer P. L., Nessel R. J., Fourier Analysis and Approximation, v. I, Academic Press, New York–London, 1971, 553 pp. | MR

[7] Dahlhaus R., “Efficient parameter estimation for self-similar processes”, Ann. Statist., 17:4 (1989), 1749–1766 | DOI | MR | Zbl

[8] Dvait G. B., Tablitsy integralov i drugie matematicheskie formuly, Nauka, M., 1977, 224 pp.

[9] Flandrin P., “On the spectrum of fractional Brownian motions”, IEEE Trans. Inform. Theory, 35:1 (1989), 197–199 | DOI | MR

[10] Fox R., Taqqu M. S., “Central limit theorem for quadratic forms in random variables having long-range dependence”, Probab. Theory Related Fields, 74:2 (1987), 213–240 | DOI | MR | Zbl

[11] Gao J., Anh V., Heyde C., Tieng Q., “Parameter estimation of stochastic processes with long-range dependence and intermittency”, J. Time Series Anal., 22:5 (2001), 517–535 | DOI | MR | Zbl

[12] Ginovyan M. S., “Asimptoticheski effektivnoe neparametricheskoe otsenivanie funktsionalov ot spektralnoi plotnosti, imeyuschei nuli”, Teoriya veroyatn. i ee primen., 33:2 (1988), 315–322 | MR | Zbl

[13] Ginovyan M. S., “Ob otsenke znachenii lineinogo funktsionala ot spektralnoi plotnosti gaussovskogo statsionarnogo protsessa”, Teoriya veroyatn. i ee primen., 33:4 (1988), 777–781 | MR | Zbl

[14] Ginovyan M. S., “Zamechanie o tsentralnoi predelnoi teoreme dlya kvadratichnykh form tëplitseva tipa ot statsionarnykh gaussovskikh velichin”, Izv. NAN Armenii, 28:2 (1993), 78–81 | MR | Zbl

[15] Ginovian M. S., “On Toeplitz type quadratic functionals in Gaussian stationary process”, Probab. Theory Related Fields, 100:3 (1994), 395–406 | DOI | MR | Zbl

[16] Ginovyan M. S., Saakyan A. A., “O tsentralnoi predelnoi teoreme dlya tëplitsevykh kvadratichnykh form ot statsionarnykh posledovatelnostei”, Teoriya veroyatn. i ee primen., 49:4 (2004), 653–671

[17] Ginovyan M. S., Sahakyan A. A., “Limit theorems for Toeplitz quadratic functionals of continuous-time stationary process”, Probab. Theory Related Fields, 138:3–4 (2007), 551–579 | DOI | MR | Zbl

[18] Ginovyan M. S., Sahakyan A. A., “A note on the approximation of the traces of the product of truncated Toeplitz matrices”, J. Contemp. Math. Anal., 138 (2009), 262–269 | DOI | MR

[19] Giraitis L., Surgailis D., “A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle's estimate”, Probab. Theory Related Fields, 86:1 (1990), 87–104 | DOI | MR | Zbl

[20] Gokhberg I. Z., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp.

[21] Grenander U., Segë G., Tëplitsevy formy i ikh prilozheniya, IL, M., 1961, 308 pp.

[22] Hasminskii R. Z., Ibragimov I. A., “Asymptotically efficient nonparametric estimation of functionals of a spectral density function”, Probab. Theory Related Fields, 73:3 (1986), 447–461 | DOI | MR | Zbl

[23] Ibragimov I. A., “Ob otsenke spektralnoi funktsii statsionarnogo gaussovskogo protsessa”, Teoriya veroyatn. i ee primen., 8:4 (1963), 391–430 | MR | Zbl

[24] Inoue A., Kasahara Y., “On the asymptotic behavior of the prediction error of a stationary process”, Trends in Probability and Related Analysis, eds. N. Kono and N. R. Shieh, World Scientific, River Edge, 1999, 207–218 | MR | Zbl

[25] Lieberman O., Phillips P. C. B., “Error bounds and asymptotic expansions for Toeplitz product functionals of unbounded spectra”, J. Time Series Anal., 25:5 (2004), 733–753 | DOI | MR | Zbl

[26] Rosenblatt M., “Asymptotic behavior of eigenvalues of Toeplitz forms”, J. Math. Mech., 11 (1962), 941–949 | MR | Zbl

[27] Solo V., “Intrinsic random functions and the paradox of $1/f$ noise”, SIAM J. Appl. Math., 52:1 (1992), 270–291 | DOI | MR | Zbl

[28] Taniguchi M., “On the second order asymptotic efficiency of estimators of Gaussian ARMA processes”, Ann. Statist., 11:1 (1983), 157–169 | DOI | MR | Zbl