Approximating the inverse of banded matrices by banded matrices with applications to probability and statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 100-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the first part of this paper we give an elementary proof of the fact that if an infinite matrix $A$, which is invertible as a bounded operator on $\ell^2$, can be uniformly approximated by banded matrices then so can the inverse of $A$. We give explicit formulas for the banded approximations of $A^{-1}$ as well as bounds on their accuracy and speed of convergence in terms of their band-width. We finally use these results to prove that the so-called Wiener algebra is inverse closed. In the second part we apply these results to covariance matrices $\Sigma$ of Gaussian processes and study mixing and beta mixing of processes in terms of properties of $\Sigma$. Finally, we note some applications of our results to statistics.
Keywords: infinite band-dominated matrices, Gaussian stochastic processes, mixing conditions, high dimensional statistical inference.
@article{TVP_2011_56_1_a4,
     author = {P. Bickel and M. Lindner},
     title = {Approximating the inverse of banded matrices by banded matrices with applications to probability and statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {100--122},
     year = {2011},
     volume = {56},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a4/}
}
TY  - JOUR
AU  - P. Bickel
AU  - M. Lindner
TI  - Approximating the inverse of banded matrices by banded matrices with applications to probability and statistics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 100
EP  - 122
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a4/
LA  - en
ID  - TVP_2011_56_1_a4
ER  - 
%0 Journal Article
%A P. Bickel
%A M. Lindner
%T Approximating the inverse of banded matrices by banded matrices with applications to probability and statistics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 100-122
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a4/
%G en
%F TVP_2011_56_1_a4
P. Bickel; M. Lindner. Approximating the inverse of banded matrices by banded matrices with applications to probability and statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 100-122. http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a4/

[1] Bickel P., Levina E., “Regularized estimation of large covariance matrices”, Ann. Statist., 36:1 (2008), 199–227 | DOI | MR | Zbl

[2] Bickel P., Levina E., “Covariance regularization by thresholding”, Ann. Statist., 36:6 (2008), 2577–2604 | DOI | MR | Zbl

[3] Cai T., Zhang C. H., Zhou H., “Optimal rates of convergence for covariance matrix estimation”, Ann. Statist., 38:4 (2010), 2118–2144 | DOI | MR | Zbl

[4] Dixmier J., $C^*$-Algebras, North–Holland, Amsterdam–New York–Oxford, 1977, 492 pp. | MR

[5] Ibragimov I. A., Rozanov Yu. A., Gaussovskie sluchainye protsessy, Nauka, M., 1970, 384 pp.

[6] Ibragimov I. A., Solev V. N., “Ob odnom uslovii regulyarnosti gaussovskogo statsionarnogo protsessa”, Dokl. AN SSSR, 185:3 (1969), 509–512 | MR | Zbl

[7] Johnstone I. M., “High dimensional statistical inference and random matrices”, International Congress of Mathematicians, v. I, Eur. Math. Soc., Zürich, 2007, 307–333 | MR | Zbl

[8] Kolmogorov A. N., Rozanov Yu. A., “Ob usloviyakh silnogo peremeshivaniya gaussovskogo statsionarnogo protsessa”, Teoriya veroyatn. i ee primen., 5:2 (1960), 222–227 | MR | Zbl

[9] Kurbatov V. G., Algebra raznostnykh operatorov, Dep. v VINITI 09.02.1982 no. 1017–82

[10] Kurbatov V. G., “Ob obratimosti pochti periodicheskikh operatorov”, Matem. sb., 180:7 (1989), 913–923 | MR

[11] Kurbatov V. G., Functional-Differential Operators and Equations, Kluwer, Dordrecht, 1999, 433 pp. | MR | Zbl

[12] Lange B. V., Rabinovich V. S., Algebra operatorov obobschennoi diskretnoi svertki s ostsilliruyuschimi koeffitsientami, Dep. v VINITI 09.02.1982 no. 3661–82

[13] Levendorskii S. Z., Rabinovich V. S., “Ob eksponentsialnom ubyvanii na beskonechnosti reshenii mnogomernykh uravnenii tipa svertki”, Izv. vuzov, 1979, no. 3, 38–44 | MR | Zbl

[14] Lindner M., Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method, Birkhäuser, Basel, 2006, 191 pp. | MR

[15] Lindner M., “Fredholmness and index are independent of the underlying space of operators in the Wiener algebra”, J. Oper. Matrices, 2:2 (2008), 297–306 | MR | Zbl

[16] Lutskii Ya. A., Rabinovich V. S., “Psevdodifferentsialnye operatory v prostranstvakh obobschennykh funktsii eksponentsialnogo povedeniya na beskonechnosti”, Funkts. analiz i ego pril., 12:1 (1978), 79

[17] Rabinovich V. S., Roch S., Silbermann B., Limit Operators and Their Applications in Operator Theory, Birkhäuser, Basel, 2004, 392 pp. | MR

[18] Runst T., Sickel W., Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter, Berlin, 1996, 547 pp. | MR | Zbl

[19] Shubin M. A., “Pochti-periodicheskie funktsii i differentsialnye operatory s chastnymi proizvodnymi”, Uspekhi matem. nauk, 33:2 (1978), 3–47 | MR

[20] Shubin M. A., “Psevdoraznostnye operatory i ikh funktsiya Grina”, Izv. AN SSSR, 49:3 (1985), 652–671 | MR | Zbl