Recurrence relations for price bounds of contingent claims in discrete time market models
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 47-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_1_a2,
     author = {D. B. Rokhlin},
     title = {Recurrence relations for price bounds of contingent claims in discrete time market models},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {47--76},
     year = {2011},
     volume = {56},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a2/}
}
TY  - JOUR
AU  - D. B. Rokhlin
TI  - Recurrence relations for price bounds of contingent claims in discrete time market models
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 47
EP  - 76
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a2/
LA  - ru
ID  - TVP_2011_56_1_a2
ER  - 
%0 Journal Article
%A D. B. Rokhlin
%T Recurrence relations for price bounds of contingent claims in discrete time market models
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 47-76
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a2/
%G ru
%F TVP_2011_56_1_a2
D. B. Rokhlin. Recurrence relations for price bounds of contingent claims in discrete time market models. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 47-76. http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a2/

[1] Carassus L., Gobet E., Temam E., “A class of financial products and models where super-replication prices are explicit”, Proceedings of the 6th Ritsumeikan international symposium on stochastic processes and applications to mathematical finance (Kyoto, Japan, 2006), World Scientific, Hackensack, 2007, 67–84 | MR

[2] Delbaen F., Schachermayer W., The Mathematics of Arbitrage, Springer, Berlin, 2006, 373 pp. | MR

[3] Dynkin E. B., Evstigneev I. V., “Regulyarnye uslovnye matematicheskie ozhidaniya sootvetstvii”, Teoriya veroyatn. i ee primen., 21:2 (1976), 334–347 | MR | Zbl

[4] Gapeev P. V., “Raschet verkhnikh i nizhnikh tsen optsionov Evropeiskogo tipa”, Uspekhi matem. nauk, 52:4 (1997), 199–200 | MR | Zbl

[5] Grigoriev P. G., “On low dimensional case in the fundamental asset pricing theorem with transaction costs”, Statist. Decisions, 23:1 (2005), 33–48 | DOI | MR | Zbl

[6] Guschin A. A., Mordetskii E., “Granitsy tsen optsionov dlya semimartingalnykh modelei rynka”, Tr. MIAN, 237, 2002, 80–122 | Zbl

[7] Harrison J. M., Pliska S. R., “Martingales and stochastic integrals in the theory of continuous trading”, Stochastic Process. Appl., 11:3 (1981), 215–260 | DOI | MR | Zbl

[8] Kabanov Yu., Safarian M., Markets with Transaction Costs, Springer-Verlag, Berlin, 2009, 294 pp. | MR

[9] Kascheev D. E., “On the option pricing for a generalization of the binomial model”, J. Math. Sci. (New York), 99:3 (2000), 1267–1272 | DOI | MR | Zbl

[10] Melnikov A. V., Feoktistov K. M., “Voprosy bezarbitrazhnosti i polnoty diskretnykh rynkov i raschety platezhnykh obyazatelstv”, Obozr. prikl. i promyshl. matem., 8:1 (2001), 28–40 | Zbl

[11] Niculescu C. P., Persson L.-E., Convex Functions and Their Applications. A Contemporary Approach, Springer, New York, 2006, 255 pp. | MR | Zbl

[12] Ritchken P. H., Kuo S., “Option bounds with finite revision opportunities”, J. Finance, 43:2 (1988), 301–308 | DOI

[13] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973, 469 pp.

[14] Rockafellar R. T., Wets R.J.-B., Variational Analysis, Springer, Berlin, 1998, 733 pp. | MR | Zbl

[15] Rokhlin D. B., “Zadacha o martingalnom vybore v sluchae konechnogo diskretnogo vremeni”, Teoriya veroyatn. i ee primen., 50:3 (2005), 480–500

[16] Rokhlin D. B., “Konstruktivnyi kriterii otsutstviya arbitrazha pri nalichii operatsionnykh izderzhek v sluchae konechnogo diskretnogo vremeni”, Teoriya veroyatn. i ee primen., 52:1 (2007), 41–59 | MR

[17] Rokhlin D. B., “Teorema o martingalnom vybore dlya sluchainoi posledovatelnosti s otnositelno otkrytymi vypuklymi znacheniyami”, Matem. zametki, 81:4 (2007), 614–620 | MR | Zbl

[18] Rokhlin D. B., “Martingale selection problem and asset pricing in finite discrete time”, Electron. Comm. Probab., 12 (2007), 1–8 | MR | Zbl

[19] Roux A., Tokarz K., Zastawniak T., “Options under proportional transaction costs: An algorithmic approach to pricing and hedging”, Acta Appl. Math., 103:2 (2008), 201–219 | DOI | MR | Zbl

[20] Rüschendorf L., “On upper and lower prices in discrete time-models”, Tr. MIAN, 237, 2002, 134–139 | MR

[21] Schachermayer W., “The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time”, Math. Finance, 14:1 (2004), 19–48 | DOI | MR | Zbl

[22] Soner H. M., Shreve S. E., Cvitanić J., “There is no nontrivial hedging portfolio for option pricing with transaction costs”, Ann. Appl. Probab., 5:2 (1995), 327–355 | DOI | MR | Zbl

[23] Tokarz K., Zastawniak T., Dynamic programming algorithms for the ask and bid prices of American options under small proportional transaction costs, Working paper, 2004 http://ssrn.com/abstract=581543

[24] Shataev O. V., “O spravedlivoi tsene optsiona evropeiskogo tipa”, Uspekhi matem. nauk, 53:6 (1998), 269–270 | MR | Zbl

[25] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 2, Teoriya, Fazis, M., 1998, 528 pp.

[26] Zukhovitskii S. I., Avdeeva L. I., Lineinoe i vypukloe programmirovanie, Nauka, M., 1967, 460 pp.