@article{TVP_2011_56_1_a12,
author = {S. V. Nagaev},
title = {The renewal theorem without further power moments},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {188--197},
year = {2011},
volume = {56},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a12/}
}
S. V. Nagaev. The renewal theorem without further power moments. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 188-197. http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a12/
[1] Kolmogorov A. N., “Tsepi Markova so schetnym chislom vozmozhnykh sostoyanii”, Byull. MGU, sekts. A, matem. mekh., 1:3 (1937), 1–16
[2] Erdős P., Feller W., Pollard H., “A property of power series with positive coefficients”, Bull. Amer. Math. Soc., 55 (1949), 201–204 | DOI | MR | Zbl
[3] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1964, 498 pp. | MR
[4] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1967, 752 pp. | MR
[5] de Bruijn N. G., Erdős P., “On a recursion formula and some Tauberian theorems”, J. Res. Nat. Bur. Stand., 50 (1953), 161–164 | MR | Zbl
[6] Garsia A., Lamperti J., “A discrete renewal theorem with infinite mean”, Comment. Math. Helv., 37 (1963), 221–234 | DOI | MR | Zbl
[7] Williamson J. A., “Random walks and Riesz kernels”, Pacific J. Math., 25:2 (1968), 393–415 | MR | Zbl
[8] Rvacheva E. L., “Ob oblasti prityazheniya mnogomernykh raspredelenii”, Uchenye zapiski Lvovskogo gos. un-ta, ser. mekh.-matem., 6:29 (1954), 5–44 | MR | Zbl
[9] Darling D. A., “The influence of the maximal term in the addition of independent random variables”, Trans. Amer. Math. Soc., 73:1 (1952), 95–107 | DOI | MR | Zbl
[10] Nagaev S. V., Vakhtel V. I., “O summakh nezavisimykh sluchainykh velichin bez stepennykh momentov”, Sib. matem. zhurn., 49:6 (2008), 1369–1380 | MR | Zbl