On a limit distribution of the maximal level of empirical distribution density and the regression function. II
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 176-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2011_56_1_a11,
     author = {M. S. Muminov},
     title = {On a limit distribution of the maximal level of empirical distribution density and the regression {function.~II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {176--188},
     year = {2011},
     volume = {56},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a11/}
}
TY  - JOUR
AU  - M. S. Muminov
TI  - On a limit distribution of the maximal level of empirical distribution density and the regression function. II
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 176
EP  - 188
VL  - 56
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a11/
LA  - ru
ID  - TVP_2011_56_1_a11
ER  - 
%0 Journal Article
%A M. S. Muminov
%T On a limit distribution of the maximal level of empirical distribution density and the regression function. II
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 176-188
%V 56
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a11/
%G ru
%F TVP_2011_56_1_a11
M. S. Muminov. On a limit distribution of the maximal level of empirical distribution density and the regression function. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 176-188. http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a11/

[1] Smirnov N. V., “O postroenii doveritelnoi oblasti dlya plotnosti raspredeleniya sluchainoi velichiny”, Dokl. AN SSSR, 74:2 (1950), 189–191 | MR | Zbl

[2] Smirnov N. V., “O priblizhenii plotnostei raspredeleniya sluchainykh velichin”, Uch. zap. MGPI im. V. P. Potemkina, 16:3 (1951), 69–96

[3] Smirnov N. V., “O priblizhenii plotnostei raspredeleniya sluchainykh velichin”, Teoriya veroyatnostei i matematicheskaya statistika. Izbrannye trudy, Nauka, M., 1970, 205–223 | MR

[4] Bickel P. J., Rosenblatt M., “On some global measures of the deviations of density function estimates”, Ann. Statist., 1:6 (1973), 1071–1095 | DOI | MR | Zbl

[5] Rosenblatt M., “On the maximal deviation of $k$-dimensional density estimates”, Ann. Probab., 4:6 (1976), 1009–1015 | DOI | MR | Zbl

[6] Khashimov Sh. A., Muminov M. S., “O predelnom raspredelenii maksimalnogo ukloneniya splain-otsenok plotnosti veroyatnosti”, Veroyatnostnye raspredeleniya i matematicheskaya statistika, Fan, Tashkent, 1986, 447–467 | MR

[7] Nadaraya E. A., Neparametricheskoe otsenivanie plotnosti veroyatnostei i krivoi regressii, Tbilisi, 1983, 195 pp. | MR

[8] Johnston G. J., “Probabilities of maximal deviations for nonparametric regression function estimates”, J. Multivariate Anal., 12:3 (1982), 402–414 | DOI | MR | Zbl

[9] Révész P., “On the nonparametric estimation of the regression function”, Problems of Control and Information Theory, 8:4 (1979), 297–302 | MR | Zbl

[10] Wandl H., On kernel estimation of regression functions, Wissensshaftliche sitzungen zur stochastik, WSS-03, Berlin, 1980 | MR

[11] Liero H., “On the maximal deviation of the kernel regression functions estimate”, Math. Operationsforssh. Statist. Ser. Statist., 13:2 (1982), 171–182 | MR

[12] Hall P., “On convergence rates of suprema”, Probab. Theory Related Fields, 89:4 (1991), 447–445 | DOI | MR

[13] Konakov V. D., Piterbarg V. I., “Skorost skhodimosti raspredelenii maksimalnykh uklonenii gaussovskikh protsessov i empiricheskikh plotnostei. I”, Teoriya veroyatn. i ee primen., 27:4 (1982), 707–724 | MR | Zbl

[14] Konakov V. D., Piterbarg V. I., “Skorost skhodimosti raspredelenii maksimalnykh uklonenii gausovskikh protsessov i empiricheskikh plotnostei. II”, Teoriya veroyatn. i ee primen., 28:1 (1983), 164–169 | MR | Zbl

[15] Konakov V. D., Piterbarg V. I., “On the convergence rate of maximal deviation distribution for kernel regression estimates”, J. Multivariate Anal., 15:3 (1984), 279–294 | DOI | MR | Zbl

[16] Konakov V. D., “Utochnenie predelnykh teorem dlya maksimuma ukloneniya neparametricheskoi otsenki regresii”, 3-ya Mezhdunarodnaya Vilnyusskaya konferentsiya po teorii veroyatnostei i matematicheskoi statistike, Tezisy dokladov, v. 1, 1981, 241–242

[17] Konakov V. D., “O maksimalnykh ukloneniyakh empiricheskoi plotnosti i regressii. Nekotorye obschie metody issledovaniya”, 6th international summer school on problems of model choice and parameter estimation in regression analysis (Sellin, 1983), Seminarberichte, 51, Humboldt Univ., Berlin, 1983, 106–125 | MR | Zbl

[18] Konakov V. D., On convergence rate of suprema in the presence of nonnegligible trends, Preprint no. 103, Institut für Andewandte Analysis und Stochastik, Berlin, 1994

[19] Rosenblatt M., “Remarks on a multivariate transformation”, Ann. Math. Statist., 23 (1952), 470–472 | DOI | MR | Zbl

[20] Konakov V. D., “Approximations of deviations fields of some nonparametric statistical estimates by Gaussian fields, invariance principles”, Lecture Notes in Math., 1021, 1983, 302–314 | MR

[21] Mikhaleva T. L., Piterbarg V. I., “O raspredelenii maksimuma gaussovskogo polya s postoyannoi dispersiei na gladkom mnogoobrazii”, Teoriya veroyatn. i ee primen., 41:2 (1996), 438–451 | MR | Zbl

[22] Kramer G., Matematicheskie metody statistiki, IL, M., 1948, 631 pp.

[23] Rio E., “Local invariance principles and their application to density estimation”, Probab. Theory Related Fields, 98:1 (1994), 21–45 | DOI | MR | Zbl

[24] Lamperti Dzh., Veroyatnost, Nauka, M., 1973, 183 pp.

[25] Piterbarg V. I., Asimptoticheskie metody v teorii gaussovskikh sluchainykh protsessov i polei, Izd-vo Mosk. un-ta, M., 1988, 175 pp.

[26] Slepian D., “The one-sided barrier problem for Gaussian noise”, Bell System Tech. J., 41:2 (1962), 463–501 | MR

[27] Piterbarg V. I., Stamatovich S., “On maximum of Gaussian non-centered fields indexed on smooth manifolds”, Asymptotic Methods in Probability and Statistics with Applications, eds. N. Balakrishnan, I. A. Ibragimov, and V. B. Nevzorov, Birkhäuser, Boston, 2001, 189–203 | MR | Zbl

[28] Konakov V., Piterbarg V., “High level excursions of Gaussian fields and the weakly optimal choice of the smoothing parameter. I”, Math. Methods Statist., 4:4 (1995), 421–434 | MR | Zbl