@article{TVP_2011_56_1_a1,
author = {B. S. Darhovsky},
title = {Uncertain change-point problem for random sequence},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {30--46},
year = {2011},
volume = {56},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a1/}
}
B. S. Darhovsky. Uncertain change-point problem for random sequence. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 30-46. http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a1/
[1] Shiryaev A. N., “O stokhasticheskikh modelyakh i optimalnykh metodakh v zadachakh skoreishego obnaruzheniya”, Teoriya veroyatn. i ee primen., 53:3 (2008), 417–436
[2] Lai T. L., “Sequential multiple hypothesis testing and efficient fault detection-isolation in stochastic systems”, IEEE Trans. Inform. Theory, 46:2 (2000), 595–608 | DOI | Zbl
[3] Nikiforov I. V., “A simple recursive algorithm for diagnosis of abrupt changes in random signals”, IEEE Trans. Inform. Theory, 46:7 (2000), 2740–2746 | DOI | MR | Zbl
[4] Nikiforov I. V., “A lower bound for the detection/isolation delay in a class of sequential tests”, IEEE Trans. Inform. Theory, 49:11 (2003), 3037–3047 | DOI | MR
[5] Tartakovsky A. G., “Multidecision quickest change-point detection: previous achievements and open problems”, Sequential Anal., 27:2 (2008), 201–231 | DOI | MR | Zbl
[6] Brodsky B., Darkhovsky B., “Minimax methods for multihypothesis sequential testing and change-point detection problems”, Sequential Anal., 27:2 (2008), 141–173 | DOI | MR | Zbl
[7] Brodsky B. E., Darkhovsky B. S., Non-Parametric Statistical Diagnosis: Problems and Methods, Kluwer, Dordrecht, 2000, 452 pp. | MR | Zbl
[8] Kruglov V. M., Korolev V. Yu., Predelnye teoremy dlya sluchainykh summ, Izd-vo MGU, M., 1990, 269 pp.
[9] Borovkov A. A., “Asimptoticheski optimalnye resheniya v zadache o razladke”, Teoriya veroyatn. i ee primen., 43:4 (1998), 625–654 | Zbl