Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 3-29

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain analogues of the well-known Chebyshev's exponential inequality $\mathbf P(\xi \ge x)\le e^{-\Lambda^{(\xi)}(x)}$, $x>\mathbf E\,\xi$, for the distribution of a random variable $\xi$, where $\Lambda^{(\xi)}(x):=\sup_\lambda\{\lambda x- \log \mathbf E\,e^{\lambda \xi}\}$ is the large deviation rate function for $\xi$. Generalizations of this relation are established for multivariate random vectors $\xi$, for sums of the vectors, and for trajectories of random processes associated with such sums.
Keywords: Cramér condition, large deviation rate function, random walk, deviation functional, action functional, convex set, large deviations, large deviation principle, extended large deviation principle, inequalities for large deviations.
@article{TVP_2011_56_1_a0,
     author = {A. A. Borovkov and A. A. Mogul'skii},
     title = {Chebyshev type exponential inequalities  for sums of random vectors and random walk trajectories},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--29},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a0/}
}
TY  - JOUR
AU  - A. A. Borovkov
AU  - A. A. Mogul'skii
TI  - Chebyshev type exponential inequalities  for sums of random vectors and random walk trajectories
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2011
SP  - 3
EP  - 29
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a0/
LA  - ru
ID  - TVP_2011_56_1_a0
ER  - 
%0 Journal Article
%A A. A. Borovkov
%A A. A. Mogul'skii
%T Chebyshev type exponential inequalities  for sums of random vectors and random walk trajectories
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2011
%P 3-29
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a0/
%G ru
%F TVP_2011_56_1_a0
A. A. Borovkov; A. A. Mogul'skii. Chebyshev type exponential inequalities  for sums of random vectors and random walk trajectories. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 3-29. http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a0/