Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories
Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 3-29
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain analogues of the well-known Chebyshev's exponential inequality
$\mathbf P(\xi \ge x)\le e^{-\Lambda^{(\xi)}(x)}$, $x>\mathbf E\,\xi$, for the distribution of a random variable $\xi$, where $\Lambda^{(\xi)}(x):=\sup_\lambda\{\lambda x- \log \mathbf E\,e^{\lambda \xi}\}$ is the large deviation rate function for $\xi$. Generalizations of this relation are established for multivariate random vectors $\xi$, for sums of the vectors, and for trajectories of random processes associated with such sums.
Keywords:
Cramér condition, large deviation rate function, random walk, deviation functional, action functional, convex set, large deviations, large deviation principle, extended large deviation principle, inequalities for large deviations.
@article{TVP_2011_56_1_a0,
author = {A. A. Borovkov and A. A. Mogul'skii},
title = {Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {3--29},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a0/}
}
TY - JOUR AU - A. A. Borovkov AU - A. A. Mogul'skii TI - Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2011 SP - 3 EP - 29 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a0/ LA - ru ID - TVP_2011_56_1_a0 ER -
%0 Journal Article %A A. A. Borovkov %A A. A. Mogul'skii %T Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories %J Teoriâ veroâtnostej i ee primeneniâ %D 2011 %P 3-29 %V 56 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a0/ %G ru %F TVP_2011_56_1_a0
A. A. Borovkov; A. A. Mogul'skii. Chebyshev type exponential inequalities for sums of random vectors and random walk trajectories. Teoriâ veroâtnostej i ee primeneniâ, Tome 56 (2011) no. 1, pp. 3-29. http://geodesic.mathdoc.fr/item/TVP_2011_56_1_a0/