@article{TVP_2010_55_4_a4,
author = {B. Bercu and L. Coutin and N. Savy},
title = {Sharp large deviations for the fractional {Ornstein{\textendash}Uhlenbeck} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {732--771},
year = {2010},
volume = {55},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a4/}
}
B. Bercu; L. Coutin; N. Savy. Sharp large deviations for the fractional Ornstein–Uhlenbeck process. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 4, pp. 732-771. http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a4/
[1] Bahadur R. R., Ranga Rao R., “On deviations of the sample mean”, Ann. Math. Statist., 31 (1960), 1015–1027 | DOI | MR | Zbl
[2] Bercu B., Gamboa F., Rouault A., “Large deviations for quadratic forms od stationary Gaussian processes”, Stochastic Process. Appl., 71:1 (1997), 75–90 | DOI | MR | Zbl
[3] Bercu B., Rouault A., “Sharp large deviations for the Ornstein–Uhlenbeck process”, Teoriya veroyatn. i ee primen., 46:1 (2001), 74–93 | MR | Zbl
[4] Bishwall J. P. N., “Large deviations in testing fractional Ornstein–Uhlenbeck models”, Statist. Probab. Lett., 78:8 (2008), 953–962 | DOI | MR
[5] Brouste A., Kleptsyna M., “Asymptotic properties of MLE for partially observed fractional diffusion system.”, Stat. Inference Stoch. Process., 13:1 (2010), 1–13 | DOI | MR | Zbl
[6] Bryc W., Dembo A., “Large deviations for quadratic functionals of Gaussian processes”, J. Theoret. Probab., 10:2 (1997), 307–332 | DOI | MR | Zbl
[7] Dembo A., Zeitouni O., Large Deviations Techniques and Applications, Springer-Verlag, New York, 1998, 396 pp. | MR | Zbl
[8] Florens-Landais D., Pham H., “Large deviations in estimation of an Ornstein–Uhlenbeck model”, J. Appl. Probab., 36:1 (1999), 60–77 | DOI | MR | Zbl
[9] Gamboa F., Rouault A., Zani M., “A functional large deviations principle for quadratic forms of Gaussian stationary processes”, Statist. Probab. Lett., 43:3 (1999), 299–308 | DOI | MR | Zbl
[10] Hu Y., Nualart D., “Parameter estimation for fractional Ornstein–Uhlenbeck processes”, Statist. Probab. Lett., 80:11–12 (2010), 1030–1038 | MR | Zbl
[11] Jost C., “Transformation formulas for fractional Brownian motion”, Stochastic Process. Appl., 116:10 (2006), 1341–1357 | DOI | MR | Zbl
[12] Kleptsyna M. L., Le Breton A., “Statictical analysis of the fractional Ornstein–Uhlenbeck type process”, Stat. Inference Stoch. Process., 5:3 (2002), 229–248 | DOI | MR | Zbl
[13] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M., L., 1963, 358 pp. | MR
[14] Norros I., Valkeila E., Virtamo J., “An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion”, Bernoulli, 5:4 (1999), 571–587 | DOI | MR | Zbl
[15] Prakasa Rao B. L. S., “Sequential estimation for fractional Ornstein–Uhlenbeck type process”, Sequential Anal., 23:1 (2004), 33–44 | DOI | MR | Zbl
[16] Prakasa Rao B. L. S., “Estimation for translation of a process driven by fractional Brownian motion”, Stoch. Anal. Appl., 23:6 (2005), 1199–1212 | DOI | MR | Zbl
[17] Rudin W., Real and Complex Analysis, McGraw-Hill, New York, 1987, 416 pp. | MR | Zbl