Criterions of the exponential growth of particles for some models of branching random walks
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 4, pp. 705-731 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2010_55_4_a3,
     author = {E. B. Yarovaya},
     title = {Criterions of the exponential growth of particles for some models of branching random walks},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {705--731},
     year = {2010},
     volume = {55},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a3/}
}
TY  - JOUR
AU  - E. B. Yarovaya
TI  - Criterions of the exponential growth of particles for some models of branching random walks
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2010
SP  - 705
EP  - 731
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a3/
LA  - ru
ID  - TVP_2010_55_4_a3
ER  - 
%0 Journal Article
%A E. B. Yarovaya
%T Criterions of the exponential growth of particles for some models of branching random walks
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2010
%P 705-731
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a3/
%G ru
%F TVP_2010_55_4_a3
E. B. Yarovaya. Criterions of the exponential growth of particles for some models of branching random walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 4, pp. 705-731. http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a3/

[1] Albeverio S., Bogachev L. V., Yarovaya E. B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. R. Acad. Sci. Paris, 326:9 (1998), 975–980 | MR | Zbl

[2] Albeverio S., Bogachev L. V., “Branching random walk in a catalytic medium. I. Basic equations”, Positivity, 4 (2000), 41–100 | DOI | MR | Zbl

[3] Bogachev L. V., Yarovaya E. B., “Momentnyi analiz vetvyaschegosya sluchainogo bluzhdaniya na reshetke s odnim istochnikom”, Dokl. RAN, 363:4 (1998), 439–442 | MR | Zbl

[4] Bogachev L. V., Yarovaya E. B., “Predelnaya teorema dlya nadkriticheskogo vetvyaschegosya sluchainogo bluzhdaniya na $\\\ mathbb Z^d$ s odnim istochnikom”, Uspekhi matem. nauk, 53:5 (1998), 229–230 | MR | Zbl

[5] Vatutin V. A., Topchii V. A., “Predelnaya teorema dlya kriticheskikh kataliticheskikh vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 49:3 (2004), 461–484 | MR | Zbl

[6] Vatutin V. A., Topchii V. A., Yarovaya E. B., “Catalytic branching random walk and queueing systems with random number of independent servers”, Teor. Imov. ta Mat. Stat., 69 (2003), 158–172

[7] Gärtner J., Molchanov S. A., “Parabolic problems for the Anderson model. I: Intermittency and related topics”, Comm. Math. Phys., 132:3 (1990), 613–655 | DOI | MR

[8] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 2, Nauka, M., 1973, 639 pp. | MR

[9] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970, 534 pp. | MR

[10] Zakhareva E. V., “O veroyatnostyakh vyzhivaniya chastits na $\mathbb Z^2$ v odnoi iz modelei kriticheskogo vetvyaschegosya sluchainogo bluzhdaniya”, Trudy Kolmogorovskikh chtenii, 2008, 218–229

[11] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR | Zbl

[12] Loev M., Teoriya veroyatnostei, IL, M., 1962, 719 pp.

[13] Molchanov S., “Lectures on random media”, Lecture Notes in Math., 1581, 1994, 242–411 | MR | Zbl

[14] Topchii V. A., Vatutin V. A., “Individuals at the origin in the critical catalytic branching random walk”, Discrete Random Walks (Paris, 2003), Assoc. Discrete Math. Theoret. Comput. Sci., Nancy, 2003, 325–332 | MR

[15] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp. | MR

[16] Sevastyanov B. A., “Minimalnye tochki nadkriticheskogo vetvyaschegosya bluzhdaniya na reshetke $\mathbf N_0^r$ i mnogotipnye vetvyaschiesya protsessy Galtona–Vatsona”, Diskret. matem., 12:1 (2000), 3–6

[17] Shohat J. A., Tamarkin J. D., The Problem of Moments, Amer. Math. Soc., New York, 1943, 140 pp. | MR | Zbl

[18] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR

[19] Shiryaev A. N., Veroyatnost. V 2-kh kn., MTsNMO, M., 2004, 928 pp.

[20] Shubin M. A., “Psevdoraznostnye operatory i ikh funktsiya Grina”, Izv. AN SSSR, 49:3 (1985), 652–671 | MR | Zbl

[21] Yarovaya E. B., “Primenenie spektralnykh metodov v izuchenii vetvyaschikhsya protsessov s diffuziei v nekompaktnom fazovom prostranstve”, Teoret. matem. fiz., 88:1 (1991), 25–30 | MR | Zbl

[22] Yarovaya E. B., “Predelnaya teorema dlya kriticheskogo vetvyaschegosya sluchainogo bluzhdaniya na $\mathbb Z^d$ s odnim istochnikom”, Uspekhi matem. nauk, 60:1 (2005), 175–176 | MR | Zbl

[23] Yarovaya E. B., Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, TsPI pri mekhmate Mosk. un-ta, M., 2007, 104 pp.

[24] Yarovaya E. B., “Kriticheskie vetvyaschiesya sluchainye bluzhdaniya po reshetkam nizkikh razmernostei”, Diskret. matem., 21:1 (2009), 117–138 | MR

[25] Yarovaya E., “Survival analysis in nonhomogeneous branching random walks”, Sixth Conference “Mathematical Methods in Reliability”. Theory. Methods. Applications (Moscow, 2009), 2009, 38–41

[26] Yarovaya E. B., “Modeli vetvyaschikhsya bluzhdanii i ikh primenenie v teorii nadezhnosti”, Avtomatika i telemekhanika, 2010, no. 7, 29–46 | Zbl

[27] Yarovaya E. B., “Ob issledovanii vetvyaschikhsya sluchainykh bluzhdanii po mnogomernym reshetkam”, Sovremennye problemy matematiki i mekhaniki, ser. “Teoriya veroyatnostei i matematicheskaya statistika”, 4, Izd-vo Mosk. un-ta, M., 2009, 119–136