@article{TVP_2010_55_4_a2,
author = {A. A. Gushchin},
title = {Dual characterization of value function in maximization problem of robast utility},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {680--704},
year = {2010},
volume = {55},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a2/}
}
A. A. Gushchin. Dual characterization of value function in maximization problem of robast utility. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 4, pp. 680-704. http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a2/
[1] Owen M. P., Žitković G., “Optimal investment with an unbounded random endowment and utility-based pricing”, Math. Finance, 19:1 (2009), 129–159 | DOI | MR | Zbl
[2] Pliska S. R., “A stochastic calculus model of continuous trading: optimal portfolios”, Math. Oper. Res., 11:2 (1986), 370–382 | DOI | MR
[3] Quenez M.-C., “Optimal portfolio in a multiple-priors model”, Seminar on Stochastic Analysis, Random Fields and Applications IV, Progr. Probab., 58, Birkhäuser, Basel, 2004, 291–321 | MR | Zbl
[4] Rockafellar R. T., “Extension of {F}enchel's duality theorem for convex functions”, Duke Math. J., 33:1 (1966), 81–89 | DOI | MR | Zbl
[5] Samuelson P. A., “Lifetime portfolio selection by dynamic stochastic programming”, Rev. Econom. Statist., 51:3 (1969), 239–246 | DOI
[6] Schachermayer W., “Optimal investment in incomplete markets when wealth may become negative”, Ann. Appl. Probab., 11:3 (2001), 694–734 | DOI | MR | Zbl
[7] Schachermayer W., “Optimal investment in incomplete financial markets”, Mathematical Finance–Bachelier Congress (2000, Paris), Springer, Berlin, 2002, 427–462 | MR | Zbl
[8] Schied A., “On the {N}eyman–{P}earson problem for law-invariant risk measures and robust utility functionals”, Ann. Appl. Probab., 14:3 (2004), 1398–1423 | DOI | MR | Zbl
[9] Schied A., “Optimal investments for robust utility functionals in complete market models”, Math. Oper. Res., 30:3 (2005), 750–764 | DOI | MR | Zbl
[10] Schied A., “Risk measures and robust optimization problems”, Stoch. Models, 22:4 (2006), 753–831 | DOI | MR | Zbl
[11] Schied A., “Optimal investments for risk- and ambiguity-averse preferences: a duality approach”, Finance Stoch., 11:1 (2007), 107–129 | DOI | MR | Zbl
[12] Schied A., “Robust optimal control for a consumption-investment problem”, Math. Methods Oper. Res., 67:1 (2008), 1–20 | DOI | MR | Zbl
[13] Schied A., Föllmer H., Weber S., “Robust preferences and robust portfolio choice”, Mathematical Modeling and Numerical Methods in Finance, Handbook of Numerical Analysis, 15, Special Volume, Elsevier/North-Holland, Amsterdam, 2009, 29–87 | Zbl
[14] Schied A., Wu C.-T., “Duality theory for optimal investments under model uncertainty”, Statist. Decisions, 23:3 (2005), 199–217 | DOI | MR | Zbl
[15] Talay D., Zheng Z., “Worst case model risk management”, Finance Stoch., 6:4 (2002), 517–537 | DOI | MR | Zbl
[16] Neiman Dzh. fon, Morgenshtern O., Teoriya igr i ekonomicheskoe povedenie, Nauka, M., 1970, 707 pp. | MR
[17] Wittmüss W., “Robust optimization of consumption with random endowment”, Stochastics, 80:5 (2008), 459–475 | MR | Zbl
[18] Yan J. A., “Caractérisation d'une classe d'ensembles convexes de $L^1$ ou $H^1$”, Lecture Notes in Math., 784, 1980, 220–222 | MR | Zbl
[19] Yan J. A., “A numeraire-free and original probability based framework for financial markets”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. III, Higher Ed. Press, Beijing, 2002, 861–871 | MR | Zbl
[20] Z{ă}linescu C., Convex Analysis in General Vector Spaces, World Scientific, River Edge, 2002, 367 pp. | MR
[21] Žitković G., “Utility maximization with a stochastic clock and an unbounded random endowment”, Ann. Appl. Probab., 15:1B (2005), 748–777 | DOI | MR