@article{TVP_2010_55_4_a10,
author = {A. Czyzewska-Jankowska and Z. J. Jurek},
title = {Factorization property of generalized $s$-selfdecomposable measures and class $L^F$ distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {812--819},
year = {2010},
volume = {55},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a10/}
}
TY - JOUR AU - A. Czyzewska-Jankowska AU - Z. J. Jurek TI - Factorization property of generalized $s$-selfdecomposable measures and class $L^F$ distributions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2010 SP - 812 EP - 819 VL - 55 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a10/ LA - en ID - TVP_2010_55_4_a10 ER -
%0 Journal Article %A A. Czyzewska-Jankowska %A Z. J. Jurek %T Factorization property of generalized $s$-selfdecomposable measures and class $L^F$ distributions %J Teoriâ veroâtnostej i ee primeneniâ %D 2010 %P 812-819 %V 55 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a10/ %G en %F TVP_2010_55_4_a10
A. Czyzewska-Jankowska; Z. J. Jurek. Factorization property of generalized $s$-selfdecomposable measures and class $L^F$ distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 4, pp. 812-819. http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a10/
[1] Aoyama T., Maejima M., “Characterizations of subclasses of type G distributions on $\mathbb R^d$ by stochastic random integral representation”, Bernoulli, 13 (2007), 148–160 | DOI | MR | Zbl
[2] Araujo A., Giné E., The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York, 1980 | MR | Zbl
[3] Cuppens R., Decomposition of Multivariate Probabilities, Academic Press, New York, 1975, 244 pp. | MR | Zbl
[4] Czyżewska–Jankowska A., Jurek Z. J., “A note on a composition of two random integral mappings $\mathcal J^\beta$ and some examples”, Stoch. Anal. Appl., 27:6 (2009), 1212–1220 | DOI | MR
[5] Iksanov A. M., Jurek Z. J., Schreiber B. M., “A new factorization property of the selfdecomposable probability measures”, Ann. Probab., 32:2 (2004), 1356–1369 | DOI | MR | Zbl
[6] Jurek Z. J., “Relations between the $s$-selfdecomposable and selfdecomposable measures”, Ann. Probab., 13:2 (1985), 592–608 | DOI | MR | Zbl
[7] Jurek Z. J., “Random integral representation for classes of limit distributions similar to Lévy class $L_0$”, Probab. Theory Related Fields., 78 (1988), 473–490 | DOI | MR | Zbl
[8] Jurek Z. J.,Mason J. D., Operator-Limit Distributions in Probability Theory, Wiley, New York, 1993 | MR | Zbl
[9] Jurek Z. J., Vervaat W., “An integral representation for selfdecomposable Banach space valued random variables”, Z. Wahrscheinlichkeitstheor. verw. Geb., 62 (1983), 247–262 | DOI | MR | Zbl
[10] Jurek Z. J., Yor M., “Selfdecomposable laws associated with hyperbolic functions”, Probab. Math. Stat., 24:1 (2004), 180–190 | MR
[11] Lévy P., “Wiener's random functions, and other Laplacian random functions”, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Univ. California Press, Berkeley, 1951, 171–187 | MR
[12] Linnik Yu.V., Ostrovskii I. V., Razlozhenie sluchainykh velichin i vektorov, Nauka, M., 1972, 479 pp. | MR
[13] Parthasarathy K. R., Probability Measures on Metric Spaces, Academic Press, New York, London, 1967, 276 pp. | MR | Zbl
[14] Yor M., Some Aspects of Brownian Motion. Part I: Some Special Functionals, Birkhäuser, Basel, 1992, 136 pp. | MR