Factorization property of generalized $s$-selfdecomposable measures and class $L^F$ distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 4, pp. 812-819 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2010_55_4_a10,
     author = {A. Czyzewska-Jankowska and Z. J. Jurek},
     title = {Factorization property of generalized $s$-selfdecomposable measures and class $L^F$ distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {812--819},
     year = {2010},
     volume = {55},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a10/}
}
TY  - JOUR
AU  - A. Czyzewska-Jankowska
AU  - Z. J. Jurek
TI  - Factorization property of generalized $s$-selfdecomposable measures and class $L^F$ distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2010
SP  - 812
EP  - 819
VL  - 55
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a10/
LA  - en
ID  - TVP_2010_55_4_a10
ER  - 
%0 Journal Article
%A A. Czyzewska-Jankowska
%A Z. J. Jurek
%T Factorization property of generalized $s$-selfdecomposable measures and class $L^F$ distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2010
%P 812-819
%V 55
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a10/
%G en
%F TVP_2010_55_4_a10
A. Czyzewska-Jankowska; Z. J. Jurek. Factorization property of generalized $s$-selfdecomposable measures and class $L^F$ distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 4, pp. 812-819. http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a10/

[1] Aoyama T., Maejima M., “Characterizations of subclasses of type G distributions on $\mathbb R^d$ by stochastic random integral representation”, Bernoulli, 13 (2007), 148–160 | DOI | MR | Zbl

[2] Araujo A., Giné E., The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York, 1980 | MR | Zbl

[3] Cuppens R., Decomposition of Multivariate Probabilities, Academic Press, New York, 1975, 244 pp. | MR | Zbl

[4] Czyżewska–Jankowska A., Jurek Z. J., “A note on a composition of two random integral mappings $\mathcal J^\beta$ and some examples”, Stoch. Anal. Appl., 27:6 (2009), 1212–1220 | DOI | MR

[5] Iksanov A. M., Jurek Z. J., Schreiber B. M., “A new factorization property of the selfdecomposable probability measures”, Ann. Probab., 32:2 (2004), 1356–1369 | DOI | MR | Zbl

[6] Jurek Z. J., “Relations between the $s$-selfdecomposable and selfdecomposable measures”, Ann. Probab., 13:2 (1985), 592–608 | DOI | MR | Zbl

[7] Jurek Z. J., “Random integral representation for classes of limit distributions similar to Lévy class $L_0$”, Probab. Theory Related Fields., 78 (1988), 473–490 | DOI | MR | Zbl

[8] Jurek Z. J.,Mason J. D., Operator-Limit Distributions in Probability Theory, Wiley, New York, 1993 | MR | Zbl

[9] Jurek Z. J., Vervaat W., “An integral representation for selfdecomposable Banach space valued random variables”, Z. Wahrscheinlichkeitstheor. verw. Geb., 62 (1983), 247–262 | DOI | MR | Zbl

[10] Jurek Z. J., Yor M., “Selfdecomposable laws associated with hyperbolic functions”, Probab. Math. Stat., 24:1 (2004), 180–190 | MR

[11] Lévy P., “Wiener's random functions, and other Laplacian random functions”, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Univ. California Press, Berkeley, 1951, 171–187 | MR

[12] Linnik Yu.V., Ostrovskii I. V., Razlozhenie sluchainykh velichin i vektorov, Nauka, M., 1972, 479 pp. | MR

[13] Parthasarathy K. R., Probability Measures on Metric Spaces, Academic Press, New York, London, 1967, 276 pp. | MR | Zbl

[14] Yor M., Some Aspects of Brownian Motion. Part I: Some Special Functionals, Birkhäuser, Basel, 1992, 136 pp. | MR