@article{TVP_2010_55_4_a1,
author = {V. A. Vatutin},
title = {Polling systems and multitype branching processes in a random environment with final product},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {644--679},
year = {2010},
volume = {55},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a1/}
}
TY - JOUR AU - V. A. Vatutin TI - Polling systems and multitype branching processes in a random environment with final product JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2010 SP - 644 EP - 679 VL - 55 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a1/ LA - ru ID - TVP_2010_55_4_a1 ER -
V. A. Vatutin. Polling systems and multitype branching processes in a random environment with final product. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 4, pp. 644-679. http://geodesic.mathdoc.fr/item/TVP_2010_55_4_a1/
[1] Albeverio S. A., Kozlov M. V., “O vozvratnosti i tranzientnosti zavisyaschikh ot sostoyaniya vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatn. i ee. primen., 48:4 (2003), 641–660 | MR | Zbl
[2] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. I: Predelnye teoremy”, Teoriya veroyatn. i ee. primen., 48:2 (2003), 274–300 | MR | Zbl
[3] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. II: Konechnomernye raspredeleniya”, Teoriya veroyatn. i ee. primen., 49:2 (2004), 231–268 | MR | Zbl
[4] Vishnevskii V. M., Semenova O. V., “Matematicheskie metody issledovaniya sistem pollinga”, Avtomatika i telemekhanika, 2006, no. 2, 3–56 | MR | Zbl
[5] Grishechkin S. A., “Odnokanalnye sistemy s krugovym dostupom ili razdeleniem protsessora i vetvyaschiesya protsessy”, Matem. zametki, 44 (1988), 433–448 | MR
[6] Grishechkin S. A., “Vetvyaschiesya protsessy i sistemy s povtornymi vyzovami ili sluchainoi distsiplinoi”, Teoriya veroyatn. i ee. primen., 35:1 (1990), 35–50 | MR
[7] Kozlov M. V., “Uslovnaya predelnaya teorema kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Dokl. RAN, 344:1 (1995), 12–15 | MR | Zbl
[8] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp. | MR
[9] Yashkov S. F., Yashkova A. S., “Razdelenie protsessora: obzor matematicheskoi teorii”, Informatsionnye sistemy, 7:3 (2007), 248–322
[10] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[11] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Functional limit theorems for strongly subcritical branching processes in random environment”, Stoch. Process. Appl., 115:10 (2005), 1658–1676 | DOI | MR | Zbl
[12] Altman E., “Semi-linear stochastic difference equations”, Discrete Event Dyn. Syst., 19 (2009), 115–136 | DOI | MR | Zbl
[13] Altman E., Fiems D., “Expected waiting time in symmetric polling systems with correlaite walking times”, Queueing Syst., 56 (2007), 241–253 | DOI | MR | Zbl
[14] Athreya K. B., Karlin S., “On branching processes with random environments. I: Extinction probability”, Ann. Math. Statist., 42 (1971), 1499–1520 | DOI | MR | Zbl
[15] Athreya K. B., Karlin S., “On branching processes with random environments. II: Limit theorems”, Ann. Math. Statist., 42 (1971), 1843–1858 | DOI | MR | Zbl
[16] Athreya K. B., Ney P. E., Branching Processes, Springer-Verlag, Berlin, 1972, 288 pp. | MR | Zbl
[17] Buraczewski D., Damek E., Guivarc'h Y., Hulanicki A., Urban R., “Tail-homogeneity of stationary measures for some multidimensional stochastic recursions”, Probab. Theory Related Fields, 145:3–4 (2009), 385–420 | DOI | MR | Zbl
[18] Davis R. A., Mikosch T., Basrak B., Limit theory for the sample autocorrelations of solutions to stochastic recurrence equations with applications to GARCH processes, Preprint, 1999 | MR
[19] Dembo A., Peres Y., Zeitouni O., “Tail estimates for one-dimensional random walk in random environment”, Comm. Math. Phys., 181 (1996), 667–683 | DOI | MR | Zbl
[20] Dyakonova E., Geiger J., Vatutin V., “On the survival probability and a functional limit theorem for branching processes in random environment”, Markov Process. Related Fields, 10 (2004), 289–306 | MR | Zbl
[21] Foss S., Chernova N., “On the stability of a partially accessible multi-station queue with state-dependent routing”, Queueing Systems Theory Appl., 29:1 (1998), 55–73 | DOI | MR | Zbl
[22] Foss S., Kovalevskii A., “A stability criterion via fluid limits and its application to a polling system”, Queueing Systems Theory Appl., 32:1 (1999), 131–168 | DOI | MR | Zbl
[23] Foss S., Last G., “On the stability of greedy polling systems with general service policies”, Probab. Eng. Inform. Sci., 12:1 (1998), 49–68 | DOI | MR | Zbl
[24] Fuhrmann S. W., “A decomposition result for a class of polling models”, Queueing Systems Theory Appl., 11:1–2 (1992), 109–120 | DOI | MR | Zbl
[25] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 | MR | Zbl
[26] Guivarc'h Y., “Heavy tail properties of stationary solutions of multidimensional stochastic recursions”, Dynamics Stochastics, IMS Lecture Notes Monogr. Ser., 48, Inst. Math. Statist., Beachwood, 2006, 85–99 | MR
[27] Gut A., Stopped Random Walks. Limit Theorems and Applications, Springer-Verlag, New York, 1988, 198 pp. | MR
[28] Kesten H., “Random difference equations and renewal theory for products of random matrices”, Acta Math., 131 (1973), 207–248 | DOI | MR | Zbl
[29] Kesten H., Kozlov M. V., Spitzer F., “A limit law for random walk in a random environment”, Compositio Math., 30:2 (1975), 145–168 | MR | Zbl
[30] Key E., “Computable examples of the maximal Lyapunov exponent”, Probab. Theory Related Fields, 75:1 (1987), 97–107 | DOI | MR | Zbl
[31] Kingman J. F. C., “Subadditive ergodic theory”, Ann. Probab., 1 (1973), 883–909 | DOI | MR | Zbl
[32] MacPhee I., Menshikov M., Popov S., Volkov S., “Periodicity in the transient regime of exaustive polling systems”, Ann. Appl. Probab., 16:4 (2006), 1816–1850 | DOI | MR | Zbl
[33] MacPhee I., Menshikov M., Petritis D., Popov S. A., “Markov chain model of a polling systems with parameter regeneration”, Ann. Appl. Probab., 17:5–6 (2007), 1447–1473 | DOI | MR | Zbl
[34] MacPhee I., Menshikov M., Petritis D., Popov S., “Polling systems with parameter regeneration, the general case”, Ann. Appl. Probab., 18:6 (2008), 2131–2155 | DOI | MR | Zbl
[35] van der Mei R. D., “Towards a unifying theory of branching-type polling systems in heavy traffic”, Queueing Systems Theory Appl., 57:1 (2007), 29–46 | DOI | MR | Zbl
[36] Resing J. A. C., “Polling systems and multitype branching processes”, Queueing Systems Theory Appl., 13:4 (1993), 409–426 | DOI | MR | Zbl
[37] Smith W. L., Wilkinson W. E., “On branching processes in random environments”, Ann. Math. Statist., 40 (1969), 814–827 | DOI | MR | Zbl
[38] Tanny D., “On multitype branching processes in a random environment”, Adv. Appl. Probab., 13:3 (1981), 464–497 | DOI | MR | Zbl
[39] Vatutin V. A., Zubkov A. M., “Branching Processes. II”, J. Soviet Math., 67 (1993), 3407–3485 | DOI | MR | Zbl
[40] Vatutin V. A., Dyakonova E. E., “Reduced branching processes in random environment”, Mathematics and Computer Science. II: Algorithms, Trees, Combinatorics and Probabilities, eds. B. Chauvin et al., Birkhäuser, Basel, 2002, 455–467 | MR | Zbl
[41] Vatutin V. A., Dyakonova E. E., “Yaglom type limit theorem for branching processes in random environment”, Mathematics and Computer Science. III: Algorithms, Trees, Combinatorics and Probabilities, eds. M. Drmota et al., Birkhäuser, Basel, 2004, 375–385 | MR | Zbl
[42] Vatutin V. A., Dyakonova E. E., “Multitype branching processes and some queueing systems”, J. Math. Sci., 111:6 (2002), 3901–3909 | DOI | MR