Covariances of zero crossings in Gaussian processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 3, pp. 548-570 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2010_55_3_a7,
     author = {M. Sinn and K. Keller},
     title = {Covariances of zero crossings in {Gaussian} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {548--570},
     year = {2010},
     volume = {55},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_3_a7/}
}
TY  - JOUR
AU  - M. Sinn
AU  - K. Keller
TI  - Covariances of zero crossings in Gaussian processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2010
SP  - 548
EP  - 570
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2010_55_3_a7/
LA  - en
ID  - TVP_2010_55_3_a7
ER  - 
%0 Journal Article
%A M. Sinn
%A K. Keller
%T Covariances of zero crossings in Gaussian processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2010
%P 548-570
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2010_55_3_a7/
%G en
%F TVP_2010_55_3_a7
M. Sinn; K. Keller. Covariances of zero crossings in Gaussian processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 3, pp. 548-570. http://geodesic.mathdoc.fr/item/TVP_2010_55_3_a7/

[1] Abrahamson I. G., “Orthant probabilities for the quadrivariate normal distribution”, Ann. Math. Statist., 35 (1964), 1685–1708 | DOI | MR

[2] Bacon R. H., “Approximation to multivariate normal orthant probabilities”, Ann. Math. Statist., 34 (1963), 191–198 | DOI | MR | Zbl

[3] Beran J., Statistics for Long-Memory Processes, Chapman and Hall, New York, 1994, 315 pp. | MR | Zbl

[4] Berman S. M., Sojourns and Extremes of Stochastic Processes, Wadsworth and Brooks/Cole, Pacific Grove, California, 1992, 300 pp. | MR | Zbl

[5] Chang S., Pihl G. E., Essigmann M. W., “Representations of speech sounds and some of their statistical properties”, Proc. IRE, 39 (1951), 147–153 | DOI

[6] Cheng M. C., “The orthant probability of four Gaussian variates”, Ann. Math. Statist., 40 (1969), 152–161 | DOI | MR | Zbl

[7] Coeurjolly J. F., “Simulation and identification of the fractional Brownian motion: A bibliographical and comparative study”, J. Stat. Software, 5 (2000)

[8] Craig P., “A new reconstruction of multivariate normal orthant probabilities”, J. Roy. Statist. Soc. Ser. B Statist. Methodol., 70:1 (2008), 227–243 | MR | Zbl

[9] Damsleth E., El-Shaarawi A. H., “Estimation of autocorrelation in a binary time series”, Stoch. Hydrol. Hydraul., 2 (1988), 61–72 | DOI | Zbl

[10] David F. N., “A note on the evaluation of the multivariate normal integral”, Biometrika, 40 (1953), 458–459 | MR | Zbl

[11] Ewing G., Taylor J., “Computer recognition of speech using zero-crossing information”, IEEE Trans. on Audio and Electroacoustics, 17:1 (1969), 37–40 | DOI

[12] Ho H.-C., Sun T. C., “A central limit theorem for noninstantaneous filters of a stationary Gaussian process”, J. Multivariate Anal., 22:1 (1987), 144–155 | DOI | MR | Zbl

[13] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge Univ. Press, Cambridge, 1985, 561 pp. | MR | Zbl

[14] Kedem B., Time Series Analysis by Higher Order Crossings, IEEE Press, New York, 1994, 318 pp. | MR | Zbl

[15] Keenan D. M., “A rime series analysis of binary data”, J. Amer. Statist. Assoc., 77:380 (1982), 816–821 | DOI | MR | Zbl

[16] Marković D., Koch M., “Sensitivity of Hurst parameter estimation to periodic signals in time series and filtering approaches”, Geophys. Res. Lett., 32 (2005), L17401 | DOI

[17] Piterbarg V. I., Asymptotic Methods in the Theory of Gaussian Processes and Fields, Amer. Math. Soc., Providence, 1996, 206 pp. | MR

[18] Plackett R. L., “A reduction formula for normal multivariate integrals”, Biometrika, 41 (1954), 351–360 | MR | Zbl

[19] Rabiner L. R., Schafer R. W., Digital Processing of Speech Signals, Prentice-Hall, London, 1978

[20] Shi B., Vidakovic B., Katul G., Albertson J. D., “Assessing the effects of atmospheric stability on the fine structure of surface layer turbulence using local and global multiscale approaches”, Phys. Fluids, 17 (2005), 055104 | DOI | Zbl