@article{TVP_2010_55_3_a6,
author = {L. Nguyen-Ngoc},
title = {Limiting laws and penalization of certain {L\'evy} processes by a function of their maximum},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {530--547},
year = {2010},
volume = {55},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_3_a6/}
}
L. Nguyen-Ngoc. Limiting laws and penalization of certain Lévy processes by a function of their maximum. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 3, pp. 530-547. http://geodesic.mathdoc.fr/item/TVP_2010_55_3_a6/
[1] Baudoin F., “Conditioned stochastic differential equations: Theory, examples and application to finance”, Stochastic Process. Appl., 100 (2002), 109–145 | DOI | MR | Zbl
[2] Baudoin F., Nguyen-Ngoc L., “The financial value of a weak information in a financial market”, Finance Stoch., 8:3 (2004), 415–435 | DOI | MR | Zbl
[3] Bertoin J., “Sur la décomposition de la trajectoire d'un processus de Lévy spectralement positif en son infimum”, Ann. Inst. H. Poincaré, 27:4 (1991), 537–547 | MR | Zbl
[4] Bertoin J., Lévy Processes, Cambridge Univ. Press, Cambridge, 1996, 265 pp. | MR
[5] Chaumont L., “Sur certains processus de Lévy conditionnés à rester positifs”, Stochastics Stochastics Rep., 47:1–2 (1994), 1–20 | MR | Zbl
[6] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR
[7] Millar P. W., “Zero-one laws and the minimum of a {M}arkov process”, Trans. Amer. Math. Soc., 226 (1977), 365–391 | DOI | MR | Zbl
[8] Nguyen-Ngoc L., Weak conditioning for jump processes, Technical report No 851, Universités de Paris 6 Paris 7, Paris, 2003
[9] Nguyen-Ngoc L., Yor M., “Some martingales associated to reflected Lévy processes”, Lecture Notes in Math., 1857, 2005, 42–69 | MR | Zbl
[10] Roynette B., Vallois P., Yor M., “Limiting laws associated with Brownian motion perturbated by normalized exponential weights”, C. R. Math. Acad. Sci. Paris, 337:10 (2003), 667–673 | MR | Zbl
[11] Roynette B., Vallois P., Yor M., “Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time. II”, Studia Sci. Math. Hungar., 43:3 (2006), 295–360 | MR | Zbl
[12] Roynette B., Vallois P., Yor M., “Pénalisations et quelques extensions du théorème de Pitman, relatives au mouvement brownien et à son maximum unilatère”, Lecture Notes in Math., 1874, 2006, 305–336 | MR | Zbl