Noncentral limit theorem for the cubic variation of a class of self-similar stochastic processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 3, pp. 507-529 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2010_55_3_a5,
     author = {Kh. Es-Sebaiy and C. A. Tudor},
     title = {Noncentral limit theorem for the cubic variation of a class of self-similar stochastic processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {507--529},
     year = {2010},
     volume = {55},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_3_a5/}
}
TY  - JOUR
AU  - Kh. Es-Sebaiy
AU  - C. A. Tudor
TI  - Noncentral limit theorem for the cubic variation of a class of self-similar stochastic processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2010
SP  - 507
EP  - 529
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2010_55_3_a5/
LA  - en
ID  - TVP_2010_55_3_a5
ER  - 
%0 Journal Article
%A Kh. Es-Sebaiy
%A C. A. Tudor
%T Noncentral limit theorem for the cubic variation of a class of self-similar stochastic processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2010
%P 507-529
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2010_55_3_a5/
%G en
%F TVP_2010_55_3_a5
Kh. Es-Sebaiy; C. A. Tudor. Noncentral limit theorem for the cubic variation of a class of self-similar stochastic processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 3, pp. 507-529. http://geodesic.mathdoc.fr/item/TVP_2010_55_3_a5/

[1] Beran J., Statistics for Long-Memory Processes, Chapman Hall, New York, 1994, 315 pp. | MR | Zbl

[2] Breton J.-C., Nourdin I., “Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion”, Electron. Commun. Probab., 13 (2008), 482–493 | MR | Zbl

[3] Breuer P., Major P., “Central limit theorems for nonlinear functionals of Gaussian fields”, J. Multivariate Anal., 13:3 (1983), 425–441 | DOI | MR | Zbl

[4] Chronopoulou A., Tudor C. A., Viens F., Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes, arXiv: 0807.1208

[5] Chronopoulou A., Viens F., Tudor C. A., “Variations and Hurst index estimation for a Rosenblatt process using longer filters”, Electron. J. Statist., 3 (2009), 1393–1435 | DOI | MR

[6] Coeurjolly J.-F., “Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths”, Statist. Inference Stoch. Process., 4:2 (2001), 199–227 | DOI | MR | Zbl

[7] Dobrushin R. L., Major P., “Non-central limit theorems for non-linear functionals of Gaussian fields”, Z. Wahrscheinlichkeitstheor. verw. Geb., 50:1 (1979), 27–52 | DOI | MR | Zbl

[8] Embrechts P., Maejima M., Selfsimilar Processes, Princeton Univ. Press, Princeton, 2002, 111 pp. | MR | Zbl

[9] Jacod J., Shiryaev A. N., Limit Theorems for Stochastic Processes, Grundlehren Math. Wiss., 288, 2nd ed., Springer-Verlag, Berlin, 2003, 661 pp. | MR | Zbl

[10] Giraitis L., Surgailis D., “CLT and other limit theorems for functionals of Gaussian processes”, Z. Wahrschienlichkeitstheor. verw. Geb., 70:2 (1985), 191–212 | DOI | MR | Zbl

[11] Maejima M., Tudor C. A., “Wiener integrals with respect to the Hermite process and a non-central limit theorem”, Stochastic Anal. Appl., 25:5 (2007), 1043–1056 | DOI | MR | Zbl

[12] Nourdin I., Nualart D., Tudor C. A, Central and non-central limit theorems for weighted power variations of the fractional Brownian motion, arXiv: 0710.5639

[13] Nourdin I., Peccati G., Réveillac A., “Multivariate normal approximation using Stein's method and Malliavin calculus”, Ann. Inst. H. Poincaré, 46:1 (2010), 45–58 | DOI | MR | Zbl

[14] Nualart D., Malliavin Calculus and Related Topics, Springer-Verlag, Berlin, 2006, 382 pp. | MR

[15] Nualart D., Ortiz-Latorre S., “Central limit theorems for multiple stochastic integrals and Malliavin calculus”, Stochastic Process. Appl., 118:4 (2008), 614–628 | DOI | MR | Zbl

[16] Prokhorov Yu. V., Statulevicius V. (eds.), Limit Theorems in Probability Theory, Springer, Berlin, 2006

[17] Samorodnitsky G., Taqqu M. S., Stable Non-Gaussian Random Processes, Chapman Hall, New York, 1994, 632 pp. | MR

[18] Taqqu M. S., “Weak convergence to fractional Brownian motion and to the Rosenblatt process”, Z. Wahrscheinlichkeitstheor. verw. Geb., 31 (1975), 287–302 | DOI | MR | Zbl

[19] Tudor C. A., “Analysis of the Rosenblatt process”, ESAIM Probab. Statist., 12 (2008), 230–257 | DOI | MR | Zbl

[20] Tudor C. A., Viens F. G., “Variations and estimators for self-similarity parameters via Malliavin calculus”, Ann. Probab., 37:6 (2009), 2093–2134 | DOI | MR | Zbl