Uniform integrability for strong ratio limit theorems. II
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 3, pp. 446-461 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2010_55_3_a2,
     author = {M. G. Shur},
     title = {Uniform integrability for strong ratio limit {theorems.~II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {446--461},
     year = {2010},
     volume = {55},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_3_a2/}
}
TY  - JOUR
AU  - M. G. Shur
TI  - Uniform integrability for strong ratio limit theorems. II
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2010
SP  - 446
EP  - 461
VL  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2010_55_3_a2/
LA  - ru
ID  - TVP_2010_55_3_a2
ER  - 
%0 Journal Article
%A M. G. Shur
%T Uniform integrability for strong ratio limit theorems. II
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2010
%P 446-461
%V 55
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2010_55_3_a2/
%G ru
%F TVP_2010_55_3_a2
M. G. Shur. Uniform integrability for strong ratio limit theorems. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 3, pp. 446-461. http://geodesic.mathdoc.fr/item/TVP_2010_55_3_a2/

[1] Aleksandryan R. A., Mirzakhanyan E. A., Obschaya topologiya, Vysshaya shkola, M., 1979, 336 pp. | Zbl

[2] Kirillov A. A., Gvishiani A. D., Teoremy i zadachi funktsionalnogo analiza, Nauka, M., 1988, 397 pp. | MR

[3] Khalmosh P., Teoriya mery, IL, M., 1953, 291 pp. | MR

[4] Shur M. G., “Predelnye teoremy dlya otnoshenii, assotsiirovannykh s samosopryazhennymi operatorami i simmetrichnymi tsepyami Markova”, Teoriya veroyatn. i ee primen., 45:2 (2000), 268–288 | MR | Zbl

[5] Shur M. G., “Kvazifellerovskie rasshireniya markovskikh tsepei i suschestvovanie dvoistvennykh tsepei. I”, Matem. zametki, 69:1 (2001), 133–143 | MR | Zbl

[6] Shur M. G., “Usloviya ravnomernoi integriruemosti v silnykh predelnykh teoremakh dlya otnoshenii. I”, Teoriya veroyatn. i ee primen., 50:3 (2005), 517–532 | MR

[7] Shur M. G., Mazhoriruyuschie potentsialy v silnykh predelnykh teoremakh dlya otnoshenii (to appear)

[8] Woess W., Random Walks on Infinite Graphs and Groups, Cambridge Univ. Press, Cambridge, 2000, 334 pp. | MR