@article{TVP_2010_55_2_a6,
author = {M. E. Zhukovskii},
title = {The weak zero-one law for the random distance graphs},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {344--350},
year = {2010},
volume = {55},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a6/}
}
M. E. Zhukovskii. The weak zero-one law for the random distance graphs. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 2, pp. 344-350. http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a6/
[1] Glebskii Yu. V., Kogan D. I., Legonkii M. I., Talanov V. A., “Oblast i stepen realizuemosti formul ogranichennogo ischisleniya predikatov”, Kibernetika, 5 (2003), 142–154
[2] Fagin R., “Probabilities in finite models”, J. Symbolic Logic, 41:1 (1976), 50–58 | DOI | MR | Zbl
[3] Shelah S., Spencer J. H., “Zero-one laws for sparse random graphs”, J. Amer. Math. Soc., 1:1 (1988), 97–115 | MR | Zbl
[4] Raigorodskii A. M., “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, Uspekhi matem. nauk, 56:1 (2001), 107–146 | MR
[5] Raigorodskii A. M., Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007, 136 pp.
[6] Bollobás B., Random Graphs, Cambridge Univ. Press, Cambridge, 2001, 498 pp. | MR
[7] Kolchin V. F., Sluchainye grafy, Fizmatlit, M., 2004, 255 pp.
[8] Vereschagin N. K., Shen A., Yazyki i ischisleniya, MTsNMO, M., 2000, 286 pp.
[9] Schwentick T., “On winning Ehrenfeucht games and monadic NP”, Ann. Pure Appl. Logic, 79:1 (1996), 61–92 | DOI | MR | Zbl
[10] Uspenskii V. A., Vereschagin N. K., Plisko V. E., Vvodnyi kurs matematicheskoi logiki, Fizmatlit, M., 2007, 125 pp.
[11] Ehrenfeucht A., “An application of games to the completeness problem for formalized theories”, Fund. Math., 49 (1960), 129–141 | MR
[12] Alon N., Spenser Dzh., Veroyatnostnyi metod, BINOM. Lab. znanii, M., 2007, 320 pp.