Uniform asymptotics of Poisson approximation to the Poisson-binomial distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 2, pp. 305-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2010_55_2_a4,
     author = {H.-K. Hwang and V. Zacharovas},
     title = {Uniform asymptotics of {Poisson} approximation to the {Poisson-binomial} distribution},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {305--334},
     year = {2010},
     volume = {55},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a4/}
}
TY  - JOUR
AU  - H.-K. Hwang
AU  - V. Zacharovas
TI  - Uniform asymptotics of Poisson approximation to the Poisson-binomial distribution
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2010
SP  - 305
EP  - 334
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a4/
LA  - en
ID  - TVP_2010_55_2_a4
ER  - 
%0 Journal Article
%A H.-K. Hwang
%A V. Zacharovas
%T Uniform asymptotics of Poisson approximation to the Poisson-binomial distribution
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2010
%P 305-334
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a4/
%G en
%F TVP_2010_55_2_a4
H.-K. Hwang; V. Zacharovas. Uniform asymptotics of Poisson approximation to the Poisson-binomial distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 2, pp. 305-334. http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a4/

[1] Aldous D., Probability Approximations via the Poisson Clumping Heuristic, Springer-Verlag, New York, 1989 | MR

[2] Barbour A. D., “Asymptotic expansions in the Poisson limit theorem”, Ann. Probab., 15 (1987), 748–766 | DOI | MR | Zbl

[3] Barbour A. D., Chen L. H.-Y., Stein's Method and Applications, Singapore University Press, Singapore; World Scientific Publishing Co., 2005 | MR

[4] Barbour A. D., Hall P., “On the rate of Poisson convergence”, Math. Proc. Cambridge Philos. Soc., 95 (1984), 473–480 | DOI | MR | Zbl

[5] Barbour A. D., Holst L., Janson S., Poisson Approximation, Oxford Science Publications, Oxford; Clarendon Press, 1992 | MR | Zbl

[6] Barbour A. D., Jensen J. L., “Local and tail approximations near the Poisson limit”, Scand. J. Statist., 16 (1989), 75–87 | MR | Zbl

[7] Čekanavičius V., Kruopis J., “Signed Poisson approximation: a possible alternative to normal and Poisson laws”, Bernoulli, 6 (2000), 591–606 | DOI | MR | Zbl

[8] Chen L. H.-Y., “Poisson approximation for dependent trials”, Ann. Probab., 3 (1975), 534–545 | DOI | MR | Zbl

[9] Deheuvels P., Pfeifer D., “Operator semigroups and Poisson convergence in selected metrics”, Semigroup Forum, 34 (1986), 203–224 | DOI | MR | Zbl

[10] Deheuvels P., Pfeifer D., “On a relationship between Uspensky's theorem and Poisson approximation”, Ann. Inst. Statist. Math., 40 (1988), 671–681 | DOI | MR | Zbl

[11] Deheuvels P., Pfeifer D., Puri M. L., “A new semigroup technique in Poisson approximation. Semigroups and differential operators”, Semigroup Forum, 38 (1989), 189–201 | DOI | MR | Zbl

[12] Franken P., “Approximation des Verteilungen von Summen unabhängiger nichtnegativer ganzzahler Zufallsgrössen durch Poissonsche verteilungen”, Math. Nachr., 23 (1964), 303–340 | DOI | MR

[13] Herrmann H., “Variationsabstand zwischen der Verteilung einer Summe unabhängiger nichtnegativer ganzzahliger Zufallsgrössen und Poissonschen Verteilungen”, Math. Nachr., 29 (1965), 265–289 | DOI | MR | Zbl

[14] Hwang H.-K., “Asymptotic estimates of elementary probability distributions”, Stud. Appl. Math., 99 (1997), 393–417 | DOI | MR | Zbl

[15] Hwang H.-K., “Asymptotics of Poisson approximation to random discrete distributions: an analytic approach”, Adv. Appl. Probab., 31 (1999), 448–491 | DOI | MR | Zbl

[16] Janson S., “Coupling and Poisson approximation”, Acta Appl. Math., 34 (1994), 7–15 | DOI | MR | Zbl

[17] Kennedy J. E., Quine M. P., “The total variation distance between the binomial and Poisson distributions”, Ann. Probab., 17 (1989), 396–400 | DOI | MR | Zbl

[18] Kerstan J., “Verallgemeinerung eines Satzes von Prochorow und Le Cam”, Z. Wahrsch. Verw. Gebiete, 2 (1964), 173–179 | DOI | MR | Zbl

[19] Kruopis Y., “The accuracy of approximation of the generalized binomial distribution by convolutions of Poisson measures”, Lith. Math. J., 26 (1986), 37–49 | DOI | MR | Zbl

[20] Lange K., Applied Probability, Springer-Verlag, New York, 2003 | MR

[21] Le Cam L., “An approximation theorem for the Poisson binomial distribution”, Pacific J. Math., 10 (1960), 1181–1197 | MR | Zbl

[22] Penrose M., Random Geometric Graphs, Oxford University Press, Oxford, 2003 | MR | Zbl

[23] Poisson S. D., Recherches sur la probabilité des jugements en matière criminelle et en matière civile: précedés des règles générales du calcul des probabilités, Bachelier, Paris, 1837

[24] Prokhorov Yu. V., “Asimptoticheskoe povedenie binomialnogo raspredeleniya”, Uspekhi matem. nauk, 8:3(55) (1953), 135–142 | MR

[25] Rachev S. T., Probability Metrics and the Stability of Stochastic Models, John Wiley Sons, Chichester, 1991 | MR | Zbl

[26] Roos B., “A semigroup approach to {P}oisson approximation with respect to the point metric”, Statist. Probab. Lett., 24 (1995), 305–314 | DOI | MR | Zbl

[27] Roos B., “Asymptotics and sharp bounds in the Poisson approximation to the Poisson-binomial distribution”, Bernoulli, 5 (1999), 1021–1034 | DOI | MR | Zbl

[28] Roos B., “On variational bounds in the compound Poisson approximation of the individual risk model”, Insurance Math. Econ., 40 (2007), 403–414 | DOI | MR | Zbl

[29] Shorgin S. Ya., “Approksimatsiya obobschennogo binomialnogo raspredeleniya”, Teoriya veroyatn. i ee primen., 22:4 (1977), 867–871 | MR | Zbl

[30] Waterman M. S., Introduction to Computational Biology-Maps, Sequences, and Genomes, Chapman and Hall, London, 1995 | Zbl

[31] Weba M., “Bounds for the total variation distance between the binomial and the Poisson distribution in case of medium-sized success probabilities”, J. Appl. Probab., 36 (1999), 97–104 | DOI | MR | Zbl

[32] Witte H.-J., “A unification of some approaches to Poisson approximation”, J. Appl. Probab., 27 (1990), 611–621 | DOI | MR | Zbl