Almost sure limit theorems for Gaussian sequences
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 2, pp. 405-411 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2010_55_2_a16,
     author = {P. Zuoxiang and S. Nadarajah},
     title = {Almost sure limit theorems for {Gaussian} sequences},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {405--411},
     year = {2010},
     volume = {55},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a16/}
}
TY  - JOUR
AU  - P. Zuoxiang
AU  - S. Nadarajah
TI  - Almost sure limit theorems for Gaussian sequences
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2010
SP  - 405
EP  - 411
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a16/
LA  - en
ID  - TVP_2010_55_2_a16
ER  - 
%0 Journal Article
%A P. Zuoxiang
%A S. Nadarajah
%T Almost sure limit theorems for Gaussian sequences
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2010
%P 405-411
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a16/
%G en
%F TVP_2010_55_2_a16
P. Zuoxiang; S. Nadarajah. Almost sure limit theorems for Gaussian sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 2, pp. 405-411. http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a16/

[1] Berkes I., Csáki E., “A universal result in almost sure central limit theory”, Stochastic Process. Appl., 94:1 (2001), 105–134 | DOI | MR | Zbl

[2] Berkes I., Horváth L., “The logarithmic average of sample extremes is asymptotically normal”, Stochastic Process. Appl., 91:1 (2001), 77–98 | DOI | MR | Zbl

[3] Brosamler G. A., “An almost everywhere central limit theorem”, Math. Proc. Cambridge Philos. Soc., 104:3 (1988), 561–574 | DOI | MR | Zbl

[4] Cheng S., Peng L., Qi Y., “Almost sure convergence in extreme value theory”, Math. Nachr., 190 (1998), 43–50 | DOI | MR | Zbl

[5] Csáki E., Gonchigdanzan K., “Almost sure limit theorems for the maximum of stationary Gaussian sequences”, Statist. Probab. Lett., 58:2 (2002), 195–203 | DOI | MR | Zbl

[6] Fahrner I., “A strong invariance principle for the logarithmic average of sample maxima”, Stochastic Process. Appl., 93:2 (2001), 317–337 | DOI | MR | Zbl

[7] Fahrner I., Statmüller U., “On almost sure max-limit theorems”, Statist. Probab. Lett., 37:3 (1998), 229–236 | DOI | MR

[8] Ibragimov I. A., Lifshits M. A., “On the convergence of generalized moments in almost sure central limit theorem”, Statist. Probab. Lett., 40:4 (1998), 343–351 | DOI | MR | Zbl

[9] Ibragimov I. A., Lifshits M. A., “O predelnykh teoremakh tipa “pochti navernoe””, Teoriya veroyatn. i ee primen., 44:2 (1999), 328–350 | MR | Zbl

[10] Lacey M. T., Philipp W., “A note on the almost sure central limit theorem”, Statist. Probab. Lett., 9:3 (1990), 201–205 | DOI | MR | Zbl

[11] Lidbetter M., Lindgren G., Rotsen Kh., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989, 391 pp. | MR

[12] Schatte P., “On strong versions of the central limit theorem”, Math. Nachr., 137 (1998), 249–256 | DOI | MR