@article{TVP_2010_55_2_a15,
author = {V. Prokaj and M. R\'asonyi},
title = {Local and true martingales in discrete time},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {398--405},
year = {2010},
volume = {55},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a15/}
}
V. Prokaj; M. Rásonyi. Local and true martingales in discrete time. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 2, pp. 398-405. http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a15/
[1] Dalang R., Morton A., Willinger W., “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stochastics Stochastics Rep., 29:2 (1990), 185–201 | MR | Zbl
[2] Kabanov Y., Stricker C., “On equivalent martingale measures with bounded densities”, Lecture Notes in Math., 1755, 2001, 139–148 | MR | Zbl
[3] Kabanov Y. M., “In discrete time a local martingale is a martingale under an equivalent probability measure”, Finance Stoch., 12:3 (2008), 293–297 | DOI | MR | Zbl
[4] Rásonyi M., “A note on martingale measures with bounded densities”, Tr. MIAN, 237, 2002, 212–216 | MR | Zbl
[5] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1991, 533 pp. | MR | Zbl
[6] Schachermayer W., “Martingale measures for discrete-time processes with infinite horizon”, Math. Finance, 4:1 (1994), 25–55 | DOI | MR | Zbl
[7] Shiryaev A. N., Veroyatnost, Nauka, M., 1980, 575 pp. | MR | Zbl