Limit theorems for sequences of blockwise negatively associated random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 2, pp. 392-398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2010_55_2_a14,
     author = {A. Nezakati},
     title = {Limit theorems for sequences of blockwise negatively associated random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {392--398},
     year = {2010},
     volume = {55},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a14/}
}
TY  - JOUR
AU  - A. Nezakati
TI  - Limit theorems for sequences of blockwise negatively associated random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2010
SP  - 392
EP  - 398
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a14/
LA  - en
ID  - TVP_2010_55_2_a14
ER  - 
%0 Journal Article
%A A. Nezakati
%T Limit theorems for sequences of blockwise negatively associated random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2010
%P 392-398
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a14/
%G en
%F TVP_2010_55_2_a14
A. Nezakati. Limit theorems for sequences of blockwise negatively associated random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 2, pp. 392-398. http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a14/

[1] Gaposhkin V. F., “Ob usilennom zakone bolshikh chisel dlya blochno-nezavisimykh i blochno-ortogonalnykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 39:4 (1994), 804–812 | MR | Zbl

[2] Joag-Dev K., Proschan F., “Negative association random variable, with application”, Ann. Statist., 11:1 (1983), 286–295 | DOI | MR

[3] Liu J., Gan S., Chen P., “The Hajek–Renyi inequality for the NA random variables and its application”, Statist. Probab. Lett., 43:1 (1999), 99–105 | DOI | MR | Zbl

[4] Loev M., Teoriya veroyatnostei, Mir, M., 1967, 144 pp.

[5] Matula P., “A note on the almost sure convergence of sums of negatively dependent variables”, Statist. Probab. Lett., 15:3 (1992), 209–213 | DOI | MR | Zbl

[6] Móricz F., “Strong limit theorems for blockwise $m$-dependent and blockwise quasiorthogonal sequences of random variables”, Proc. Amer. Math. Soc., 101 (1987), 709–715 | MR

[7] Newman C. M., “Asymptotic independence and limit theorems for positively and negatively dependent random variables”, Inequalities in Statistics Probability, Proceedings of the Symposium on Inequalities in Statistics and Probability, eds. Y. L. Tong, Institute of Mathematics Statistics, Hayward, CA, 1984, 127–140 | MR