@article{TVP_2010_55_2_a14,
author = {A. Nezakati},
title = {Limit theorems for sequences of blockwise negatively associated random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {392--398},
year = {2010},
volume = {55},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a14/}
}
A. Nezakati. Limit theorems for sequences of blockwise negatively associated random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 2, pp. 392-398. http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a14/
[1] Gaposhkin V. F., “Ob usilennom zakone bolshikh chisel dlya blochno-nezavisimykh i blochno-ortogonalnykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 39:4 (1994), 804–812 | MR | Zbl
[2] Joag-Dev K., Proschan F., “Negative association random variable, with application”, Ann. Statist., 11:1 (1983), 286–295 | DOI | MR
[3] Liu J., Gan S., Chen P., “The Hajek–Renyi inequality for the NA random variables and its application”, Statist. Probab. Lett., 43:1 (1999), 99–105 | DOI | MR | Zbl
[4] Loev M., Teoriya veroyatnostei, Mir, M., 1967, 144 pp.
[5] Matula P., “A note on the almost sure convergence of sums of negatively dependent variables”, Statist. Probab. Lett., 15:3 (1992), 209–213 | DOI | MR | Zbl
[6] Móricz F., “Strong limit theorems for blockwise $m$-dependent and blockwise quasiorthogonal sequences of random variables”, Proc. Amer. Math. Soc., 101 (1987), 709–715 | MR
[7] Newman C. M., “Asymptotic independence and limit theorems for positively and negatively dependent random variables”, Inequalities in Statistics Probability, Proceedings of the Symposium on Inequalities in Statistics and Probability, eds. Y. L. Tong, Institute of Mathematics Statistics, Hayward, CA, 1984, 127–140 | MR