@article{TVP_2010_55_2_a13,
author = {M. L\'opez-Garc{\'\i}a},
title = {Characterization of solutions to the log-normal moment problem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {387--391},
year = {2010},
volume = {55},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a13/}
}
M. López-García. Characterization of solutions to the log-normal moment problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 2, pp. 387-391. http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a13/
[1] Cannon J. R., The One-Dimensional Heat Equation, Addison-Wesley, Reading, 1984, 483 pp. | MR | Zbl
[2] Chihara T. S., “On generalized Stieltjes–Wigert and related orthogonal polynomials”, J. Comput. Appl. Math., 5:4 (1979), 291–297 | DOI | MR | Zbl
[3] Chihara T. S., “A characterization and a class of distribution functions for the Stieltjes–Wigert polynomials”, Canad. Math. Bull., 13 (1970), 529–532 | DOI | MR
[4] Christiansen J. S., “The moment problem associated with the Stieltjes–Wigert polynomials”, J. Math. Anal. Appl., 277:1 (2003), 218–245 | DOI | MR | Zbl
[5] G\protectómez R., L\protectópez-Garc\protectía M., “A family of heat functions as solutions of indeterminate moment problems”, Int. J. Math. Math. Sci., 2007 (2007), Article ID 41526, 11 pp.
[6] Rudin W., Real and Complex Analysis, series in higher mathematics, McGraw-Hill, New York, 1987, 416 pp. | MR | Zbl
[7] Stieltjes T. J., “Recherches sur les fractions continues”, Ann. Fac. Sci. Toulouse, 8 (1894), 1–122 ; 9 (1895), 5–47 ; Stiltes T. I., Issledovaniya o nepreryvnykh drobyakh, ONTI, Kiev, Kharkov, 1936, 155 pp. | MR | Zbl | MR