Locally most powful sequential tests for discrete Markov processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 2, pp. 369-372 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2010_55_2_a10,
     author = {P. A. Novikov},
     title = {Locally most powful sequential tests for discrete {Markov} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {369--372},
     year = {2010},
     volume = {55},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a10/}
}
TY  - JOUR
AU  - P. A. Novikov
TI  - Locally most powful sequential tests for discrete Markov processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2010
SP  - 369
EP  - 372
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a10/
LA  - ru
ID  - TVP_2010_55_2_a10
ER  - 
%0 Journal Article
%A P. A. Novikov
%T Locally most powful sequential tests for discrete Markov processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2010
%P 369-372
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a10/
%G ru
%F TVP_2010_55_2_a10
P. A. Novikov. Locally most powful sequential tests for discrete Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 2, pp. 369-372. http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a10/

[1] Berk R. H., “Locally most powerful sequential tests”, Ann. Statist., 3 (1975), 373–381 | DOI | MR | Zbl

[2] Novikov A., Novikov P., “Locally most powerful sequential tests of a simple hypothesis vs. one-sided alternatives”, J. Statist. Plan. Inference, 140:3 (2010), 750–765 | DOI | MR | Zbl

[3] Roters M., “Locally most powerful sequential tests for processes of the exponential class with stationary and independent increments”, Metrika, 39:3–4 (1992), 177–183 | DOI | MR | Zbl