Limit theorems for canonical von Mises statistics and $U$-statistics for $m$-dependent observations
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 2, pp. 226-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2010_55_2_a1,
     author = {N. V. Volod'ko},
     title = {Limit theorems for canonical von {Mises} statistics and $U$-statistics for $m$-dependent observations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {226--249},
     year = {2010},
     volume = {55},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a1/}
}
TY  - JOUR
AU  - N. V. Volod'ko
TI  - Limit theorems for canonical von Mises statistics and $U$-statistics for $m$-dependent observations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2010
SP  - 226
EP  - 249
VL  - 55
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a1/
LA  - ru
ID  - TVP_2010_55_2_a1
ER  - 
%0 Journal Article
%A N. V. Volod'ko
%T Limit theorems for canonical von Mises statistics and $U$-statistics for $m$-dependent observations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2010
%P 226-249
%V 55
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a1/
%G ru
%F TVP_2010_55_2_a1
N. V. Volod'ko. Limit theorems for canonical von Mises statistics and $U$-statistics for $m$-dependent observations. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 2, pp. 226-249. http://geodesic.mathdoc.fr/item/TVP_2010_55_2_a1/

[1] Borisov I. S., Bystrov A. A., “Predelnye teoremy dlya kanonicheskikh statistik Mizesa, postroennykh po zavisimym nablyudeniyam”, Sib. matem. zhurn., 47:6 (2006), 1205–1217 | MR | Zbl

[2] Borisov I. S., Volodko N. V., “Ortogonalnye ryady i predelnye teoremy dlya kanonicheskikh $U$- i $V$-statistik ot statsionarno svyazannykh nablyudenii”, Matem. trudy, 11:1 (2008), 25–48 | MR

[3] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1965, 655 pp. | MR

[4] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968, 496 pp. | MR | Zbl

[5] Korolyuk V. S., Borovskikh Yu. V., Teoriya $U$-statistik, Naukova dumka, Kiev, 1989, 383 pp. | MR

[6] Utev S. A., “Summy sluchainykh velichin s $\varphi$-peremeshivaniem”, Trudy In-ta matematiki SO AN SSSR, 13, 1989, 78–100 | MR | Zbl

[7] Borisov I. S., Volodko N. V., “Limit theorems and exponential inequalities for canonical $U$- and $V$-statistics of dependent trials”, High Dimensional Probability, v. V, IMS Collections, 5, The Luminy Volume, eds. C. Houdré et al., IMS, Beachwood, 2009, 108–130

[8] Eagleson G. K., “Orthogonal expansions and U-statistics”, Austral. J. Statist., 21:3 (1979), 221–237 | DOI | MR | Zbl

[9] Hoeffding W., “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19 (1948), 293–325 | DOI | MR | Zbl

[10] von Mises R., “On the asymptotic distribution of differentiable statistical functions”, Ann. Math. Statist., 18 (1947), 309–348 | DOI | MR | Zbl

[11] Rosenthal H. P., “On the subspaces of $L^p$ $(p>2)$ spanned by sequences of independent random variables”, Israel J. Math., 8 (1970), 273–303 | DOI | MR | Zbl

[12] Rubin H., Vitale R., “Asymptotic distribution of symmetric statistics”, Ann. Statist., 8:1 (1980), 165–170 | DOI | MR | Zbl