@article{TVP_2010_55_1_a9,
author = {N. A. Irkhina},
title = {On one sufficient reducibility criterion for {Wang's} principle},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {148--156},
year = {2010},
volume = {55},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a9/}
}
N. A. Irkhina. On one sufficient reducibility criterion for Wang's principle. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 148-156. http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a9/
[1] Wang S. S., “Insurance pricing and increased limits ratemaking by proportional hazards transforms”, Insurance Math. Econom., 17:1 (1995), 43–54 | DOI | MR | Zbl
[2] Wang S. S., “Premium calculation by transforming the layer premium density”, Astin Bull., 26:1 (1996), 71–92 | DOI
[3] Christofides S., “Pricing for risk in financial transactions”, Proceedings of the GISG/Astin Joint Meeting (Glasgow, 1998), 62–109
[4] Young V. R., “Discussion of Christofides conjecture regarding Wang's premium principle”, Astin Bull., 29:2 (1999), 191–195 | DOI
[5] Wang J.-L., “A note on Christofides' conjecture regarding Wang's premium principle”, Astin Bull., 30:1 (2000), 13–17 | DOI | MR | Zbl
[6] Wu X.-Y., “The natural sets of Wang's premium principle”, Astin Bull., 31:1 (2001), 139–145 | DOI | MR
[7] Arzhanova [Irkhina] N. A., “Printsip Vanga podscheta premii”, Trudy Voronezhskoi zimnei matematicheskoi shkoly S. G. Kreina, VGU, Voronezh, 2006, 16–20
[8] Denneberg D., “Premium calculation: why standard deviation should be replaced by absolute deviation”, Astin Bull., 20:2 (1990), 181–190 | DOI
[9] Venter G. G., “Premium calculation implications of reinsurance without arbitrage”, Astin Bull., 21:2 (1991), 223–230 | DOI
[10] Cherny A. S., “Weighted V@R and its properties”, Finance Stoch., 10:3 (2006), 367–393 | DOI | MR | Zbl