On one sufficient reducibility criterion for Wang's principle
Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 148-156

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TVP_2010_55_1_a9,
     author = {N. A. Irkhina},
     title = {On one sufficient reducibility criterion for {Wang's} principle},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {148--156},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a9/}
}
TY  - JOUR
AU  - N. A. Irkhina
TI  - On one sufficient reducibility criterion for Wang's principle
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2010
SP  - 148
EP  - 156
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a9/
LA  - ru
ID  - TVP_2010_55_1_a9
ER  - 
%0 Journal Article
%A N. A. Irkhina
%T On one sufficient reducibility criterion for Wang's principle
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2010
%P 148-156
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a9/
%G ru
%F TVP_2010_55_1_a9
N. A. Irkhina. On one sufficient reducibility criterion for Wang's principle. Teoriâ veroâtnostej i ee primeneniâ, Tome 55 (2010) no. 1, pp. 148-156. http://geodesic.mathdoc.fr/item/TVP_2010_55_1_a9/